首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

2.
This article reports the characterization of the biochemical behavior of glucose oxidase entrapped in polypyrrole. The immobilization of glucose oxidase in a polypyrrole film was performed by entrapment during the electropolymerization of pyrrole at a platinum electrode poised at 0.65 V vs. SCE in aqueous solution in a one-compartment electrochemical cell. Thin films of polypyrrole (0.11 mum) were obtained and the entrapped enzyme obeyed Michaelis kinetics, indicating no diffusional constraints of the substrate. Our results indicate that the entrapped glucose oxidase is more resistant to denaturation conditions such as alkaline pH and temperature (50 and 60 degrees C) than the soluble form of the enzyme. The autoinactivation constant for the entrapped enzyme was also determined in presence of 0.25M of glucose and was 6.19 x 10(-4) min(-1), i.e., corresponding to a half-life value of 20 h. The results reported here show clearly that polypyrrole matrix has a strong stabilizing effect on the stucture and on the activity of glucose oxidase.  相似文献   

3.
Glucose oxidase (GOD) was covalently immobilized onto florisil (magnesium silicate) carrier via glutaraldehyde. Immobilization conditions were optimized: the amount of initial GOD per grams of carrier as 5 mg, pH as 5.5, immobilization time as 120 min and temperature as 10 °C. Under the optimized reaction conditions activities of free and immobilized GOD were measured. Free and immobilized GOD samples were characterized with their kinetic parameters, and thermal and storage stabilities. KM and Vmax values were 68.2 mM and 435 U mg GOD−1 for free and 259 mM and 217 U mg GOD−1 for immobilized enzymes, respectively. Operational stability of the immobilized enzyme was also determined by using a stirred batch type column reactor. Immobilized GOD was retained 40% of its initial activity after 50 reuses. Storage stabilities of the immobilized GOD samples stored in the mediums with different relative humidity in the range of 0–100% were investigated during 2 months. The highest storage stability was determined for the samples stored in the medium of 60% relative humidity. Increased relative humidity from 0% to 60% caused increased storage stability of immobilized GODs, however, further increase in relative humidity from 80% to 100% caused a significant decrease in storage stability of samples.  相似文献   

4.
Glucose oxidase (GOD) was covalently immobilized on amorphous AlPO4 as well as on an AlPO4/clay mineral Sepiolite system. Immobilization of the enzyme was carried out through the -amino group of lysine residues through an aromatic Schiff's-base. Activation of the support was obtained after reaction of appropriate molecules with support surface –OH groups. The enzymatic activities of native, and different immobilized GOD systems and filtrates, were followed by the amount of liberated -gluconic acid obtained in the enzymatic β- -glucose oxidation with the aid of an automatic titrator. The kinetic properties of native and immobilized GOD were obtained for glucose concentrations in the range of physiological conditions and at different working conditions such as reaction temperature, reaction pH, and enzyme concentration.

The binding percentage of enzymes was in the 50–80% range, with residual and specific activities in the 65–80% and 90–150% ranges, respectively. No change in the pH optimum and only slight changes in the Vmax and KM kinetic parameters with respect to native GOD were observed, so that not only was little deactivation of enzyme obtained throughout the immobilization process but also that the stability of the covalently bound enzyme in the two supports appeared to have increased with respect to the soluble enzyme. GOD immobilization also increased its efficiency and operational stability in repeated uses on increasing the amount of immobilized enzyme.  相似文献   


5.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

6.
Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However, the FT-IR spectra showed that GOD and LDH were immobilized onto the nanoparticles by different binding mechanisms, the reason for which was not well explained. The optimum pH values of the immobilized GOD and LDH were changed to 8 and 10, respectively. The free and immobilized enzyme kinetic parameters (Km and Vmax) were determined by Michaelis-Menten enzyme kinetics. The Km values for free and immobilized GOD were 0.168 and 0.324 mM, respectively, while those for free and immobilized LDH were 0.19 and 0.163 mM for NAD, and 2.976 and 4.785 mM for lactate, respectively. High operational stability was observed, with more than 80% of the initial enzyme activity being retained for the immobilized GOD up to 12 h and for the immobilized LDH up to 24 h. The immobilized GOD was applied to a sequential injection analysis system for the application of bioprocess monitoring.  相似文献   

7.
We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1 M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm−1 by adding 1 mM glucose at an applied potential of −0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67 mM (S/N = 3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.  相似文献   

8.
Laccase (E.C. 1.10.3.2) from Trametes versicolor was immobilized (adsorbed) by drying on various supports (glass, glass powder, silica gel, and Nylon 66 membrane). The enzyme activity and stability were determined in diethyl ether, ethyl acetate, and methylene chloride. The initial rate for the oxidation of syringaldazine varied up to 245-fold depending on the solvent and support, the best results being obtained with Nylon 66 membrane. No inactivation of immobilized laccase over 72 h was observed in diethyl ether and ethyl acetate, while exposure to methylene chloride resulted in significant activity decreases regardless of the support material.  相似文献   

9.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

10.
葡萄糖测定方法的比较研究   总被引:8,自引:0,他引:8  
比较了传统斐林定糖,葡萄糖氧化酶-过氧化物酶比色法,葡萄糖氧化酶电极自动分析仪法测定葡萄糖。比较测定了的结果显示,三法的平均标准误差(SD),变异系数(CV)均十分接近。通过对此三种方法的回归相关性分析显示:斐林法-酶终点比色法的回归方程为y=0.9843x+6.3239,相关系数R^2=0.9989,斐林法-自动分析仪法的回归方程为y=1.0088x+2.0483,相关系数R^2=0.9991,  相似文献   

11.
Glucoamylase and glucose oxidase have been immobilized on carbodiimide-treated activated carbon particles of various sizes. Loading data indicate nonuniform distribution of immobilized enzyme within the porous support particles. Catalysts with different enzyme loading and overall activities have been prepared by varying enzyme concentration in the immobilizing solution. Analysis of these results by a new method based entirely upon experimentally observable catalyst properties indicates that intrinsic catalytic activity is reduced by immobilization of both enzymes. Immobilized glucoamylase intrinsic activity decreases with increasing enzyme loading, and similar behavior is suggested by immobilized glucose oxidase data analysis. The overall activity data interpretation method should prove useful in other immobilized enzyme characterization research, especially in situations where the intraparticle distribution of immobilized enzyme is nonuniform and unknown.  相似文献   

12.
An amperometric glucose biosensor was designed for the detection of glucose in blood, urine, beverages, and fermentation systems. In typical glucose biosensors that employ enzymes, mediators are used for efficient electron transfer between the enzymes and the electrode. However, some of these mediators are known to be toxic to the enzymes and also must be immobilized on the surface of the electrode. We propose a mediator-free glucose biosensor that uses a glucose oxidase immobilized on a tin oxide electrode. Direct electron transfer is possible in this system because the tin oxide has redox properties similar to those of mediators. The method for immobilization of the glucose oxidase onto the tin oxide is also very simple. Tin oxide was prepared by the anodization and annealing of pure tin, and this provides a large surface area for the immobilization step because of its porosity. Glucose oxidase was immobilized onto the tin oxide using the membrane entrapment method. The proposed method provides a simple process for fabricating the enzyme electrode. Glucose oxidase immobilized onto the tin oxide, prepared in accordance with this method, has a relatively large current response when comparedto those of other glucose biosensors. The sensitivity of the biosensor was 19.55 μA/mM, and a linear response was observed between 0∼3 mM glucose. This biosensor demonstrated good reproducibility and stability.  相似文献   

13.
Glucose oxidase was embedded in organic films through a layer-by-layer approach, where the enzyme demonstrated significantly enhanced electron-transfer reactivity and finely tuned enzymatic activity. An unmediated, reagentless glucose biosensor was accordingly prepared with two polyethylenimine/glucose oxidase bilayers-modified pyrolytic graphite electrode. A calibration linear range of glucose was 0.5-8.9 mM with a detection limit of 50 microM and sensitivity of 0.76 microA mM(-1).  相似文献   

14.
The carminomycin 4-O-methyltransferase enzyme from Streptomyces peucetius was covalently immobilized on 3M Emphaze ABI-activated beads. Optimal conditions of time, temperature, pH, ionic strength, enzyme, substrate (carminomycin), and cosubstrate (S-adenosyl-L-methionine) concentrations were defined for the immobilization reaction. Protein immobilization yield ranged from 52% to 60%. Including carminomycin during immobilization had a positive effect on the activity of the immobilized enzyme but a strongly negative effect on the coupling efficiency. The immobilized enzyme retained at least 57% of its maximum activity after storage at 4 degrees C for more than 4 months. The properties of the free and immobilized enzyme were compared to determine whether immobilization could alter enzyme activity. Both soluble and bound enzyme exhibited the same pH profile with an optimum near 8.0. Immobilization caused an approximately 50% decrease in the apparent K(m) (K'(m)) for carminomycin while the K'(m) for S-adenosyl-L-methionine was approximately doubled. A 57% decrease in the V(max) value occurred upon immobilization. These changes are discussed in terms of active site modifications as a consequence of the enzyme immobilization. This system has a potential use in bioreactors for improving the conversion of carminomycin to daunorubicin. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
In this study, two different approaches were assessed in order to direct the immobilization of a cyclodextrin glycosyltransferase on functionalized silica support, one by amino groups using glutaraldehyde activation (Si-NH-G-CGTase) and other by disulfide bond through the Cys on the enzyme surface (Si-SH-CGTase). The efficiency of the immobilization of the enzyme by the Cys in Si-SH was four times higher than with the amino group linkage in Si-NH-G (2.86% and 11.91%, respectively). After immobilization, the optimum pH remained at 5.5 for the two derivatives and the optimum temperature was 70 °C for the free enzyme, 80 °C for Si-SH-CGTase and 90 °C for Si-NH-G-CGTase. Both preparations were used for continuous production of cyclodextrins, and Si-NH-G-CGTase presented higher total productivity, retaining 100% of its initial activity for at least 200 h, while the Si-SH-CGTase presented only 40% at the same time. The Si-SH-CGTase could be reloaded with new enzymes linked by disulfide bonds and was able to be used for more than 200 h.  相似文献   

16.
Polyphenol oxidase (PPO) of nettle (Urtica dioica L.) was extracted and purified through (NH4)2SO4 precipitation, dialysis, and CM-Sephadex ion-exchange chromatography and was used for its characterization. The PPO showed activity to catechol, 4-methylcatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), L-tyrosine, p-cresol, pyrogallol, catechin and trans-cinnamic acid. For each of these eight substrates, optimum conditions such as pH and temperature were determined and L-tyrosine was found to be one of the most suitable substrates. Optimum pH and temperature were found at pH 4.5 and 30°C respectively and Km and Vmax values were 7.90?×?10?4?M, and 11290?EU/mL for with L-tyrosine as substrate. The inhibitory effect of several inhibitors, L-cysteine chloride, sodium azide, sodium cyanide, benzoic acid, salicylic acid, L-ascorbic acid, glutathione, thiourea, sodium diethyl dithiocarbamate, β-mercaptoethanol and sodium metabisulfite were tested. The most effective was found to be sodium diethyl dithiocarbamate which acted as a competitive inhibitor with a Ki value of 1.79?×?10?9?M. In addition one isoenzyme of PPO was detected by native polacrylamide slab gel electrophoresis.  相似文献   

17.
A glucose biosensor, based on glucose oxidase immobilized in a non-conducting (overoxidised) polypyrrole film, is described which proved practically immune from faradaic interference arising from endogeneous (ascorbate, urate, cysteine) and exogeneous (acetaminophen) electroactive interferents. The bias introduced in the measurement of 5 mM glucose by the given interferents at their maximum physiological levels never exceeded 2% which is, by far, the lowest value ever reported. The biosensor has been used for continuous subcutaneous monitoring of glucose in a rabbit implanted with a microdialysis probe. The potential and limits of this approach are discussed.  相似文献   

18.
This paper aimed at showing the interest of the composite material based on layered double hydroxides (LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application. This hybrid material combined the advantages of inorganic LDHs and organic biopolymer, CHT. Glucose oxidase (GOD) immobilized in the composite material maintained its activity well as the usage of glutaraldehyde was avoided. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, applied potential and temperature, were explored for optimum analytical performance of the enzyme electrode. The enzyme electrode provided a linear response to glucose over a concentration range of 1 x 10(-6) to 3 x 10(-3) M with a high sensitivity of 62.6 mA M(-1) cm(-2) and a detection limit of 0.1 muM based on the signal-to-noise ratio of 3.  相似文献   

19.
Thermal and binary cosolvent studies of the cholesterol oxidase (cholesterol: oxygen oxidoreductase, EC 1.1.3.6) reaction have been carried out using batch microcalorimetry and ultraviolet spectrophotometry respectively. Heat conduction measurements are shown to provide the basis for a serum cholesterol assay yielding results comparable to conventional automated clinical assay. The enthalpy of the reaction for cholesterol oxidation, measured with different sources of the enzyme in the presence and absence of catalase is -113 +/- 7.2 mJ/mumol. The value is agreement with calculated estimates based on bond energies, enthalpies of formation and trigonal additivity contribution calculations. From this heat of reaction the deltaHf0 of cholestenone (c) is calculated to be -490 kJ . mol-1. No evidence for the reverse reaction could be adduced. Enzyme activation with detergent (Surfal) is attributed to the formation of mixed micelles of cholesterol with detergent molecules. The detergent concentration at which the enzyme is half activated corresponds to the critical micelle concentration of Surfal. The enhanced enzyme activity found when ethanol, acetonitrile and dioxane were examined as binary cosolvents with water is ascribed to a conformational change in the enzyme mediated through the altered structuredness of water. This cosolvent effect is abolished in the presence of 0.18% Surfal due to the formation of inverted mixed micelles of detergent with cholesterol.  相似文献   

20.
In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the ?NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of “X-spacer-X” were used, differing by the reactive functional groups (X = aldehyde: ?CHO, isothiocyanate: ?NCS, isocyanate: ?NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30 °C against no loss for PDC and DIC).These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号