首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modified prepenicillinase was accumulated in both Escherichia coli and Bacillus subtilis treated with globomycin. Although the inhibitions of processings of prepenicillinase and prolipoprotein by globomycin in E. coli are qualitatively similar, they differ in the degree of inhibition at given concentrations of globomycin. The processing of prepenicillinase proceeds much more rapidly in E. coli than in B. subtilis.  相似文献   

2.
H Smith  S Bron  J Van Ee    G Venema 《Journal of bacteriology》1987,169(7):3321-3328
To study the diversity and efficiency of signal peptides for secreted proteins in gram-positive bacteria, two plasmid vectors were constructed which were used to probe for export signal-coding regions in Bacillus subtilis. The vectors contained genes coding for extracellular proteins (the alpha-amylase gene from Bacillus licheniformis and the beta-lactamase gene from Escherichia coli) which lacked a functional signal sequence. By shotgun cloning of restriction fragments from B. subtilis chromosomal DNA, a great variety of different export-coding regions were selected. These regions were functional both in B. subtilis and in E. coli. In a number of cases where protein export had been restored, intracellular precursor proteins of increased size could be detected, which upon translocation across the cellular membrane were processed to mature products. The high frequency with which export signal-coding regions were obtained suggests that, in addition to natural signal sequences, many randomly cloned sequences can function as export signal.  相似文献   

3.
The cloned gene coding for Bacillus licheniformis penicillinase (penP) was introduced into Escherichia coli in a heat-inducible lambda Qam vector. After induction, significant amounts of penicillinase were synthesized in the new host. The cellular location of the penicillinase was found to be almost exclusively the outer membrane fraction of E. coli, and virtually no soluble penicillinase was found. According to sodium dodecyl sulfate-gel electrophoresis, the size of the penicillinase from E. coli was identical to that of the membrane-bound form of the B. licheniformis penicillinase. Gel filtration in the presence of Triton X-100 suggested that the penicillinase from E. coli had amphiphilic properties, as does B. licheniformis membrane penicillinase. These results show that the export of the penicillinase to the outer membrane of E. coli involves the cleavage of the signal peptide from the prepenicillinase, giving an outer membrane component indistinguishable from the membrane penicillinase of B. licheniformis.  相似文献   

4.
5.
6.
Two plasmids containing the penicillinase gene of alkalophilic Bacillus sp. strain 170, pEAP1 and pEAP2, were constructed. Most of the penicillinase produced by Escherichia coli, which carried these plasmids, was found in the culture medium. This excretion is caused by the cloned DNA fragment which contains some component that changes the outer membrane of E. coli.  相似文献   

7.
8.
A phoA-lacZ gene fusion was used to isolate mutants altered in the alkaline phosphatase signal sequence. This was done by selecting Lac+ mutants from a phoA-lacZ fusion strain that produces a membrane-bound hybrid protein and is unable to grow on lactose. Two such mutant derivatives were characterized. The mutations lie within the phoA portion of the fused gene and cause internalization of the hybrid protein. When the mutations were genetically recombined into an otherwise wild-type phoA gene, they interfered with export of alkaline phosphatase to the periplasm. The mutant alkaline phosphatase protein was found instead in the cytoplasm in precursor form. DNA sequence analysis demonstrated that both mutations lead to amino acid alterations in the signal sequence of alkaline phosphatase.  相似文献   

9.
We have previously shown that Bacillus licheniformis prepenicillinase is modified and processed to form membrane-bound penicillinase in Escherichia coli which contains N-acylglyceride-cysteine27 at the NH2 terminus. In the present study, we have constructed, by in vitro site-directed mutagenesis, two mutant penicillinase genes in which the modification site (the 27th cysteine residue in prepenicillinase) is either converted into serine (penPSer27) or is deleted along with the preceding four residues (Ala23 to Cys27, delta penP2327). The modification, processing, and subcellular localization of these two mutant penicillinases in E. coli cells were studied. Our results indicate that the delta penP2327 deletion mutant prepenicillinase is largely metabolically inert and the unmodified and uncleaved form is associated with the membrane fraction; a small fraction (about 7-9%) appears to contain glyceride-modified prepenicillinase (presumably at the Cys-21 position) which is not cleaved. In contrast, the Cys-27 in equilibrium Ser-27 point mutant prepenicillinase is processed into two forms which contain Asn-29 and Ser-35 at their NH2 termini, respectively, and the bulk of the processed penicillinase appears to be located in the peri-plasm. These results are discussed in terms of the substrate specificities of signal peptidases in E. coli.  相似文献   

10.
Summary The extracellular production of alkalophilic Bacillus penicillinase by Escherichia coli HB101 carrying pEAP31 was dependent on the cultivation temperature. Extracellular production occurred only above 26°C. The penicillinase produced by the organism grown at lower temperatures accumulated in the periplasm of the cells. At high temperature, the penicillinase accumulated transiently in the periplasm and then was released gradually from the cells. The penicillinase that accumulated in the periplasm of the organism grown at low temperature could also be released by shifting to a high temperature.  相似文献   

11.
The 4 202 353 bp genome of the alkaliphilic bacterium Bacillus halodurans C-125 contains 4066 predicted protein coding sequences (CDSs), 2141 (52.7%) of which have functional assignments, 1182 (29%) of which are conserved CDSs with unknown function and 743 (18.3%) of which have no match to any protein database. Among the total CDSs, 8.8% match sequences of proteins found only in Bacillus subtilis and 66.7% are widely conserved in comparison with the proteins of various organisms, including B.subtilis. The B.halodurans genome contains 112 transposase genes, indicating that transposases have played an important evolutionary role in horizontal gene transfer and also in internal genetic rearrangement in the genome. Strain C-125 lacks some of the necessary genes for competence, such as comS, srfA and rapC, supporting the fact that competence has not been demonstrated experimentally in C-125. There is no paralog of tupA, encoding teichuronopeptide, which contributes to alkaliphily, in the C-125 genome and an ortholog of tupA cannot be found in the B.subtilis genome. Out of 11 σ factors which belong to the extracytoplasmic function family, 10 are unique to B.halodurans, suggesting that they may have a role in the special mechanism of adaptation to an alkaline environment.  相似文献   

12.
T Imanaka  T Himeno    S Aiba 《Journal of bacteriology》1987,169(9):3867-3872
The penicillinase antirepressor gene, penJ, of Bacillus licheniformis ATCC 9945a was cloned in Escherichia coli by using pMB9 as a vector plasmid. The penicillinase gene, penP, its repressor gene, penI, and penJ were encoded on the cloned 5.2-kilobase HindIII fragment of the recombinant plasmid pTTE71. The penJ open reading frame was composed of 1,803 bases and 601 amino acid residues (molecular weight, 68,388). A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site. Since this sequence was located in the 3'-terminal region of the penI gene, penJ might be transcribed together with penI as a polycistronic mRNA from the penI promoter. Frameshift mutations of penJ were constructed in vitro from pTTE71, and the penJ mutant gene was introduced into B. licheniformis by chromosomal recombination. The transformant B. licheniformis U173 (penP+ penI+ penJ) turned out to be uninducible for penicillinase production, whereas the wild-type strain (penP+ penI+ penJ+) was inducible. Only when these three genes (penP, penI, and PenJ) were simultaneously subcloned in Bacillus subtilis did the plasmid carrier exhibit inducible penicillinase production, as did wild-type B. licheniformis. It was concluded that penJ is involved in the penicillinase induction. The regulation of penP expression by penI and penJ is discussed.  相似文献   

13.
Minimum substrate sequence for signal peptidase I of Escherichia coli   总被引:4,自引:0,他引:4  
The minimum substrate sequence recognized by signal peptidase I (SPase I or leader peptidase) was defined by measuring the kinetic parameters for a set of chemically synthesized peptides corresponding to the cleavage site of the precursor maltose binding protein (pro-MBP). The minimum sequence of a substrate hydrolyzed by SPase I at a measurable rate was the pentapeptide Ala-Leu-Ala decreases Lys-Ile. The rates of hydrolysis of this substrate, however, were several hundred-fold lower than those observed for the maturation of MBP in Escherichia coli, suggesting that in addition to these minimal sites involved in recognition, other features of pro-MBP are also needed for the optimal rate of signal peptide cleavage by SPase I. One parameter may be the length of the polypeptide chain. Studies of the synthetic peptides showed that decreasing the length of the polypeptide chain of substrates decreased the substrate efficiency measured as kcat/Km. However, in one case a decrease in the length of a peptide corresponding to -7 to +3 positions of pro-MBP to a nonapeptide (-7 to +2) increased the substrate efficiency by about 900-fold. The nonapeptide is the most efficient substrate for the enzyme in vitro so far reported. It is speculated that better peptide substrates are the ones which are able to adopt folded structures.  相似文献   

14.
The membrane penicillinase of Bacillus licheniformis is a glyceride-cysteine lipoprotein whose NH2 terminus is analogous to the major outer membrane lipoprotein of Escherichia coli. When E. coli cells producing B. licheniformis penicillinase were treated with the antibiotic, globomycin, a precursor of the penicillinase, pre-penicillinase, accumulated in the cell. It could be immunoprecipitated with anti-penicillinase antibodies; it contained palmitate; and one of its two cysteine residues was modified by glycerol. The action of globomycin, probably indirectly, also activates protease which acts differently on the pre-penicillinase than does the signal peptidase. The results strongly indicate that the pre-penicillinase is processed by the globomycin-sensitive signal peptidase in E. coli, and the modification of precursor by lipid precedes removal of the signal peptide as it does with the membrane lipoproteins of E. coli.  相似文献   

15.
We have compared the rate of assembly of outer membrane proteins including the lipoprotein in a pair of isogenic mlpA+ (lpp+) and mlpA (lpp) strains by pulse-chase experiments. The rate of assembly of the mutant prolipoprotein into the outer membrane was slightly slower than that of the wild-type lipoprotein. The rate of assembly of protein I and protein H-2 was similar in the wild type and the mutant, whereas the rate of assembly of protein II into the outer membrane was slightly reduced in the mutant strain. The organization of outer membrane was slightly reduced in the mutant strain. The organization of outer membrane proteins in the mutant cells appeared not to be grossly altered, based on the apparent resistance (or susceptibility) of these proteins toward trypsin treatment and their resistance to solubilization by Sarkosyl. Like the wild-type lipoprotein, the mutant prolipoprotein in the outer membrane was resistant to trypsin. On the other hand, the prolipoprotein in the cytoplasmic membrane fraction of the mutant cell envelope was susceptible to trypsin digestion. We conclude from these data that proteolytic cleavage of prolipoprotein is not essential for the translocation and proper assembly of lipoprotein into outer membrane.  相似文献   

16.
Benzylpenicillin was clearly separated from benzylpenicilloic acid by ascending chromatography on a diethylaminoethyl cellulose paper using 0.1 M ammonium acetate as a solvent. Using this chromatographic system, penicillinase was assayed by measuring the formation of [14C]benzylpenicilloic acid from [14C]benzylpenicillin. This assay remedies the lack of specificity of the commonly used iodometric assays. Periplasmic penicillinase was released from Escherichia coli by suspension in a mixture of 1% phenethyl alcohol and 5 mM ethylenediaminetetraacetate (pH 7.0). This simple extraction method not only facilitates the assay of penicillinase in an E. coli culture, but will also be useful for large-scale purification of periplasmic penicillinase.  相似文献   

17.
New secretion vectors containing the Bacillus sp. endoxylanase signal sequence were constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli alkaline phosphatase structural gene fused to the endoxylanase signal sequence was expressed from the trc promoter in various E. coli strains by induction with IPTG. Among those tested, E. coli HB101 showed the highest efficiency of secretion (up to 25.3% of total proteins). When cells were induced with 1 mM IPTG, most of the secreted alkaline phosphatase formed inclusion bodies in the periplasm. However, alkaline phosphatase could be produced as a soluble form without reduction of expression level by inducing with less (0.01 mM) IPTG, and greater than 90% of alkaline phosphatase could be recovered from the periplasm by the simple osmotic shock method. Fed-batch cultures were carried out to examine the possibility of secretory protein production at high cell density. Up to 5.2 g/l soluble alkaline phosphatase could be produced in the periplasm by the pH-stat fed-batch cultivation of E. coli HB101 harboring pTrcS1PhoA. These results demonstrate the possibility of efficient secretory production of recombinant proteins in E. coli by high cell density cultivation. Received: 8 September 1999 / Received revision: 3 January 2000 / Accepted 4 January 2000  相似文献   

18.
We obtained two R plasmids, i.e., Rms195 and Rms298, from a clinical isolate, E. coli GN5503. Penicillin beta-lactamase (PCase) was extracted from ML1410 Rms195+ and Rms298+, and was purified by chromatography. Rms195 PCase was identical to the type I PCase mediated by R-TEM, RI and Rms212. The isoelectric point of Rms298 PCase was 5.9 and its molecular weight was 21,000 +/- 1,000. The substrate profile and physiochemical properties indicate that Rms298 PCase belongs to the type IV PCase mediated by Rms139 isolated from Pseudomonas aeruginosa.  相似文献   

19.
From a partial Sau3A gene library of Bacillus subtilis chromosomal DNA in the expression plasmid pRK9, four hybrid plasmids were isolated carrying overlapping segments of the argA-argF-cpa cluster. The complementation patterns within Escherichia coli arginine auxotrophs of these hybrids and deletion derivatives provided the gene order argC-argA-argE-argB-argD-cpa-argF.  相似文献   

20.
We analyzed the Bacillus subtilis SOS response using Escherichia coli LexA protein as a probe to measure the kinetics of SOS activation and DNA repair in wild-type and DNA repair-deficient strains. By examining the effects of DNA-damaging agents that produce the SOS inducing signal in E. coli by three distinct pathways, we obtained evidence that the nature of the SOS inducing signal has been conserved in B. subtilis. In particular, we used the B. subtilis DNA polymerase III inhibitor, 6-(p-hydroxyphenylazo)-uracil, to show that DNA replication is required to generate the SOS inducing signal following UV irradiation. We also present evidence that single-stranded gaps, generated by excision repair, serve as part of the UV inducing signal. By assaying the SOS response in B. subtilis dinA, dinB, and dinC mutants, we identified distinct deficiencies in SOS activation and DNA repair that suggest roles for the corresponding gene products in the SOS response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号