首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports, indicating that under some conditions the intensity of light scattering from cells is a nonlinear function of cell volume, have led to the widespread generalization that intensity of low-angle light scattering indicates cell size. This study was performed to measure the relationships between light scattering and cell volumes in an-isotonic solutions and after a freeze-thaw stress. Cell volumes in isolated human lymphocytes, human granulocytes, and hamster fibroblasts were deliberately altered by exposure to anisotonic solutions. Boyle-vant Hoff plots of cell volume as a function of inverse osmotic pressure showed that the cells behaved as osmometers. Similar plots of right-angle and low-angle light scattering showed that the intensity of light scattering varied inversely with cell volume. In other experiments where cells were frozen without cryoprotectant at various sub zero temperatures to -25 degrees C and then thawed rapidly, cell viability decreased progressively with decreasing temperature, as did the intensity of both low-angle and right-angle light scattering, although cell volumes remained relatively constant. The intensity of both low- and high-angle light scattering varied inversely with cell volumes in hypertonic and hypotonic solutions, but cell damage induced by freezing and thawing resulted in significant reductions in the intensity of low-angle light scattering with little change in cell volume. These observations show that light scattering and cell volumes can vary independently, and they underline the need for a better understanding of the phenomenon of light scattering from living cells.  相似文献   

2.
Differential Light Scattering from Spherical Mammalian Cells   总被引:4,自引:1,他引:3       下载免费PDF全文
The differential scattered light intensity patterns of spherical mammalian cells were measured with a new photometer which uses high-speed film as the light detector. The scattering objects, interphase and mitotic Chinese hamster ovary cells and HeLa cells, were modeled as (a) a coated sphere, accounting for nucleus and cytoplasm, and (b) a homogeneous sphere when no cellular nucleus was present. The refractive indices and size distribution of the cells were measured for an accurate comparison of the theoretical model with the light-scattering measurements. The light scattered beyond the forward direction is found to contain information about internal cellular morphology, provided the size distribution of the cells is not too broad.  相似文献   

3.
The anomalous diffraction approximation has been used in an attempt to account for the low-angle scattering from composite spheres. These are used as models for biological cells. Solutions have been obtained for both thinly and thickly coated spheres.  相似文献   

4.
The Lorenz-Mie light scattering is discussed as a tool allowing living cell characterization. The scattered light carries information about the size, shape, internal structure and refractive index of the cell. The advantages of light scattering methods consist in high speed, nondestructive, sensitive and relatively easy measurements. Light scattering methods are compatible with other methods. In light scattering in both static and flow systems. For sphere-like cells reliable size and refractive index information can be extracted. On the empirical basis, light scattering pattern can be used for the cell identification and separation purposes. The full utilization of the light scattering information is limited due to the lack of theoretical knowledge about the complex scatterer properties and efficient inversion schemes. The rapid progress in computer technique and in single-particle scattering experiments may significantly improve the interpretation of light scattering patterns of the biological particles.  相似文献   

5.
Angularly resolved light scattering measurements were performed on suspensions of EMT6 cells and on mitochondria isolated from rabbit liver. Mie theory analysis of the scattering from intact cells indicated that mitochondrial-sized organelles dominated scattering in the range 5-90 degrees . This interpretation was supported by the analysis of scattering from isolated mitochondria. Intact cells were subjected to oxidative stress by photodynamic insult. After 3 h of incubation in the heme precursor aminolevulinic acid hexylester, EMT6 cells accumulated abundant protoporphyrin IX, an endogenous photosensitizer formed in mitochondria. Irradiation of aminolevulinic acid/protoporphyrin IX-sensitized cells with 10 J cm(-2) of 514 nm light led to pronounced changes in angularly resolved light scattering consistent with mitochondrial swelling. Electron microscopy of similarly treated EMT6 cell monolayers showed significant changes in mitochondrial morphology, which included distension of the outer unit membrane and bloating of the internal mitochondrial compartment. Informed by these electron microscopy results, we implemented a coated sphere model to interpret the scattering from intact cells subjected to oxidative stress. The coated sphere interpretation was compatible with the scattering measurements from these cells, whereas simpler Mie theory models based on homogenous swelling were dramatically unsuccessful. Thus, in this system, angularly resolved light scattering reports oxidative-stress-induced changes in mitochondrial morphology.  相似文献   

6.
Cell-penetrating peptides (CPPs) constitute a family of peptides whose unique characteristic is their ability to insert into and cross biological membranes. Cell-penetrating peptide carriers of the Pep family are amphipathic peptides which have been shown to deliver peptides and proteins into a wide variety of cells through formation of non-covalent complexes with their cargo. In this study, we have investigated the morphological features of different Pep-1/cargo complexes by scanning electron microscopy and light scattering measurements. We provide first-time evidence that biologically efficient complexes of Pep-1/p27Kip tumour suppressor physically exist in the form of discrete nanoparticles. Moreover, we have characterized the relationship between the Pep-1/cargo ratio, the size and homogeneity of the nanoparticles formed, and their efficiency in delivering the cargo into cells, and report that particle size and homogeneity is both directly dependent on the ratio of Pep-1/cargo formulations, and responsible for their biological efficiency.  相似文献   

7.
Different cytochemical conditions of using Propidium Iodide, a phenanthridinic fluorochrome specific for double-stranded nucleic acids, have been considered to study some structural aspects of the interphasic chromatin. Some molecular properties of the dye allow to define the structure of chromatin fibre (degree of condensation) by means of thermal denaturation of DNA, fluorochromization after extraction of different chromatin components and fluorochromization in condition of low dye-substrate molar ratio (relative unsaturation of DNA). Different biological situations such as cell specialization, neoplastic transformation and life cycles have been examined choosing some typical models (hepatocytes, nucleated erythrocytes, lymphocytes, endometrial cells).  相似文献   

8.
Multiwavelength ultraviolet/visible (UV-Vis) spectra of microorganisms and cell suspensions contain quantitative information on properties such as number, size, shape, chemical composition, and internal structure of the suspended particles. These properties are essential for the identification and classification of microorganisms and cells. The complexity of microorganisms in terms of their chemical composition and internal structure make the interpretation of their spectral signature a difficult task. In this paper, a model is proposed for the quantitative interpretation of spectral patterns resulting from transmission measurements of prokaryotic microorganism suspensions. It is also demonstrated that different organisms give rise to spectral differences that may be used for their identification and classification. The proposed interpretation model is based on light scattering theory, spectral deconvolution techniques, and on the approximation of the frequency dependent optical properties of the basic constituents of living organisms. The quantitative deconvolution in terms of the interpretation model yields critical information necessary for the detection and identification of microorganisms, such as size, dry mass, dipicolinic acid concentration, nucleotide concentration, and an average representation of the internal scattering elements of the organisms. E. coli, P. agglomerans, B. subtilis spores, and vegetative cells and spores of Bacillus globigii are used as case studies. It is concluded that spectroscopy techniques coupled with effective interpretation models are applicable to a wide range of cell types found in diverse environments.  相似文献   

9.
Light scattering from chicken red blood cells has been used as a model system to identify the asymmetry of cells. The histogram for forward angle light scattering for these cells is bimodal, the signal size being dependent on the cell orientation. A dual orthogonal scatter system is used to conclusively demonstrate this orientational variation in signal. A third scattering system, using a single incident beam with two orthogonal detectors, is used to further characterize the orientational variation of the scatter signal. In this third system it is shown that the signal in a detector set 90 degrees from the incident beam collects light reflected from the cell surface. The optical selection of cells in specific orientations using these systems may circumvent the need to physically orient cell in flow systems.  相似文献   

10.
MOPC-315 murine myeloma grown intraperitoneally as ascites cells in BALB/cJ mice were removed at successive days after transplantation. They were stained for Id315 and I-A markers by indirect immunofluorescence techniques by means of FITC conjugates. Flow cytometry (FCM) measurements on cell surface markers were correlated with the phase of the cell cycle by quantitating cellular DNA of cells stained with propidium iodide. Variations in cell size due to cell growth were determined by low-angle light scattering. FCM data on the two cell surface markers were normalized for unit cell surface and cell volume. Cells grew rapidly in the early days (5–7) of tumor growth. No significant variation in the expression of surface markers was observed during this period. Parallel with a slowdown in cell growth, the expression of Id315 increased about threefold between the 7th and 9th days. The increase in the Id315 marker was dependent on the cell cycle, with G1 cells having the highest density. No cell cycle dependence was observed for the I-A marker.  相似文献   

11.
Peptide-conjugated gold nanorods for nuclear targeting   总被引:2,自引:0,他引:2  
Resonant electron oscillations on the surface of noble metal nanoparticles (Au, Ag, Cu) create the surface plasmon resonance (SPR) that greatly enhances the absorption and Rayleigh (Mie) scattering of light by these particles. By adjusting the size and shape of the particles from spheres to rods, the SPR absorption and scattering can be tuned from the visible to the near-infrared region (NIR) where biologic tissues are relatively transparent. Further, gold nanorods greatly enhance surface Raman scattering of adsorbed molecules. These unique properties make gold nanorods especially attractive as optical sensors for biological and medical applications. In the present work, gold nanorods are covalently conjugated with a nuclear localization signal peptide through a thioalkyl-triazole linker and incubated with an immortalized benign epithelial cell line and an oral cancer cell line. Dark field light SPR scattering images demonstrate that nanorods are located in both the cytoplasm and nucleus of both cell lines. Single cell micro-Raman spectra reveal enhanced Raman bands of the peptide as well as molecules in the cytoplasm and the nucleus. Further, the Raman spectra reveal a difference between benign and cancer cell lines. This work represents an important step toward both imaging and Raman-based intracellular biosensing with covalently linked ligand-nanorod probes.  相似文献   

12.
Single-cell forward light scattering patterns have been examinedfor four algal species (one pennate diatom, two green flagellatesand one filamentous cyanobacterium), mounted statically in afocused laser beam. In all cases, the distribution of lightintensity at narrow angles (within the first scattering lobe)is well described by diffraction theory. Narrow-angle forwardscattering measurements can therefore be used in principle todeduce the size and approximate shape of algal cells. The feasibilityof using this technique in flow cytometry has been tested usingan instrument which orientates elongated cells uniformly inthe flow stream, and uses fibre optics to make azimuthally resolvedforward scatter measurements at sub-degree polar angles. Withthis instrument it is possible to discriminate between specieswith similar volume and fluorescence characteristics using forwardlight scattering as a shape-sensitive parameter.  相似文献   

13.
A S Belmont  S Zietz  C Nicolini 《Biopolymers》1985,24(7):1301-1321
Theoretical predictions within the Born approximation of the expected differential light scattering of circularly polarized light (CIDS) were made for the 300-Å chromatin fiber, modeled as a helical array of dielectric ellipsoids. Computed CIDS values were strongly dependent on the exact geometry of the solenoid model, depending particularly on parameters relaed to the chiral nature of the fiber and the orientation of the nucleosomes within the helix, in contrast to the values of the total light scattering, which mainly probed size and shape. In particular, both a superbead model and a strict linear 110-Å nucleosome filament would be predicted as giving rise to zero CIDS (in disagreement with the finite values observed). At the same time, helical models in which the normal vectors to the nucleosome faces were exactly parallel to the helical axis also yielded zero CIDS. Confirming earlier expectations, CIDS values were significantly less dependent on helical length than total light scattering. Finally, comparison of these calculated results from those extrapolated from available experimental data indicates that predicted CIDS values, based on currently accepted models of solenoid structure, are within an order of magnitude of those experimentally observed. Together, these results indicate the potential of differential light scattering measurements as a probe of chromatin higher-order structure, complementary to existing scattering measurements.  相似文献   

14.
Virulence protein VirE2 from Agrobacterium tumefaciens is involved in plant infection by transferring a fragment of agrobacterial Ti plasmid ssT-DNA in complex with VirE2-VirD2 proteins into the plant cell nucleus. The VirE2 protein interactions with ssDNA and formation of VirE2 protein complexes in vitro and in silico have been studied. Using dynamic light scattering we found that purified recombinant protein VirE2 exists in buffer solution in the form of complexes of 2–4 protein molecules of 12–18 nm size. We used computer methods to design models of complexes consisting of two and four individual VirE2 proteins, and their dimensions were estimated. Dimensions of VirE2 complexes with ssDNA (550 and 700 nucleotide residues) were determined using transmission electron microscopy and dynamic light scattering. We found that in vitro, upon interaction with ssDNA recombinant protein, VirE2 is able to alter conformation of the latter by shortening the initial length of the ssDNA.  相似文献   

15.
Small angle light scattering distributions were measured for four polystyrene latices ranging in size from 6 to 14 μm in diameter. Similar measurements were made with suspensions of mouse spleen cells and mouse liver nuclei which had been separated by gradient centrifugation. The results indicated that whereas the Airy treatment of the scattering data proved to be an excellent approximation of the stated diameters of the latices, an approximation of the Rayleigh-Debye theory was found to be in closer agreement with the size of the bioparticles as measured with an optical micrometer. The angular scattering was also compared with Fraunhofer diffraction curves and found to agree only in the extreme forward region out to approximately 2 °. This investigation emphasizes the potential value of these methods to studies of cell suspensions.  相似文献   

16.
The structural changes during the life cycle of a synchronized population of mouse leukemia cell line L5l78Y have been described by polarized light scattering measurements. Exponentially growing cells were synchronized by an automatic excess thymidine-colcemid treatment technique. Samples were removed from the suspension culture and fixed with glutaraldehyde at hourly intervals throughout the life cycle. The effect these cell samples had in changing right-hand circularly polarized light to 45° linearly polarized light during the scattering process was measured at angles 6–l60° to the incident beam. The reproducibility of the light scattering signals for each time interval was statistically evaluated and found to have good intertrial correlation for each time period in the angular range 6–60° to the incident beam. Statistically significant changes were seen between cell samples during the synchronous life cycle. Therefore, the system developed has applications as an extremely sensitive measure of cell structure, and of structural changes caused by low-level chemical, physical or biological agents.  相似文献   

17.
Adhesion and movement ofAmoeba proteusare both dependent on the appropriate arrangement of the F-actin cytoskeleton and on the presence of the cell nucleus. In this study the F-actin organization was examined by routine FITC-phalloidin staining and confocal laser microscopy in intact amoebae and in their nucleated and anucleated fragments, at different levels of cell adherence to the substratum. In the adhering and migrating intact cells and nucleated cell fragments dot-like aggregates of F-actin are scattered over the ventral side at sites close to the substratum. In the case of de-adhesion of nucleated specimens this pattern disappears and F-actin is accumulated in the cell centre and/or dispersed in the cytoplasm. The same actin distribution, without ventral dots, is found in the anucleated fragments which usually fail to attach to the substratum. Re-adhesion of anucleated fragments, induced by a modified substratum or spontaneous, is accompanied by restoration of actin dots at the lower cell side. It is concluded that: (1) adhering specimens ofA. proteusdisplay the same dot-like actin pattern on the ventral cell side, as many metazoan motile cells; (2) organization or disorganization of this pattern may occur independently of the presence of the cell nucleus, under the control of cell adhesion to the substratum.  相似文献   

18.
Within the salamander family Plethodontidae, five different clades have evolved high levels of enucleated red blood cells, which are extremely unusual among non-mammalian vertebrates. In each of these five clades, the salamanders have large genomes and miniaturized or attenuated body forms. Such a correlation suggests that the loss of nuclei in red blood cells may be related, in part, to the interaction between large genome size and small body size, which has been shown to have profound morphological consequences for the nervous and visual systems in plethodontids. Previous work has demonstrated that variation in both the level of enucleated cells and the size of the nuclear genome exists among species of the monophyletic plethodontid genus Batrachoseps. Here, we report extensive intraspecific variation in levels of enucleated red blood cells in 15 species and provide measurements of red blood cell size, nucleus size, and genome size for 13 species of Batrachoseps. We present a new phylogenetic hypothesis for the genus based on 6150 bp of mitochondrial DNA sequence data from nine exemplar taxa and use it to examine the relationship between genome size and enucleated red blood cell morphology in a phylogenetic framework. Our analyses demonstrate positive direct correlations between genome size, nucleus size, and both nucleated and enucleated cell sizes within Batrachoseps, although only the relationship between genome size and nucleus size is significant when phylogenetically independent contrasts are used. In light of our results and broader studies of comparative hematology, we propose that high levels of enucleated, variably sized red blood cells in Batrachoseps may have evolved in response to rheological problems associated with the circulation of large red blood cells containing large, bulky nuclei in an attenuate organism.  相似文献   

19.
STRUCTURE IN NUCLEATED ERYTHROCYTES   总被引:12,自引:8,他引:4       下载免费PDF全文
The structure of the nucleated erythrocyte of frog and chicken has been investigated by electron microscopy and correlated with the distribution of haemoglobin and DNA-containing material determined by haem absorption and Feulgen staining in the light microscope. The nuclei of both species are found to contain haemoglobin which is continuous with the haemoglobin in the cytoplasm through holes or pores in the nuclear envelope. In addition the nucleus of the frog erythrocyte sometimes contains a single invagination which is lined by the nuclear envelope. The structure of the nuclear envelope and the pores and the organisation of the nucleus are similar to those already described for other somatic cells. Erythrocytes differ from the cells previously studied in that a continuity, via the nuclear pores, of chemical substance in the interior of the nucleus and in the cytoplasm can be directly demonstrated. This is due to the fact that the cytoplasm of erythrocytes is simple, consisting predominantly of haemoglobin, and that haemoglobin is easily recognised by its specific absorption. The static pictures obtained by electron microscopy have been supplemented by observations in phase-contrast of the changes in refraction of the cell contents due to the diffusion of the haemoglobin from the nucleus into the cytoplasm during haemolysis.  相似文献   

20.
The structure of Limulus ventral photoreceptors fixed in situ has been investigated using light and electron microscopy and computer-assisted reconstruction and planimetry. Photoreceptors occur singly and in clusters. All photoreceptors have two types of lobes. The rhabdomeral lobe (R lobe) appears to be specialized for light sensitivity, containing the rhabdomere, which completely covers its external surface and forms infoldings into the lobe. The structure of the external rhabdom differs from that within infoldings. The other main structures of the R lobe are the palisades along the rhabdom, multivesicular bodies, lamellar bodies, and mitochondria. The arhabdomeral lobe (A lobe) bears the axon and contains the nucleus, clusters of residual bodies, lamellar arrays of endoplasmic reticulum, masses of glycogen, lipid droplets, and Golgi complexes. The R lobe and A lobe are analogous to the outer and inner segments of vertebrae photoreceptors. In single photoreceptors A and R lobes are separated by an indentation filled with glial processes. Computer reconstructions of cell clusters reveal that each cell has both types of lobes and an axon. Most of the rhabdom is formed from abutting arrays of external rhabdom from the R lobes of different members of the cluster. Efferent fibers containing characteristic angular granules penetrate single cells and clusters in glial invaginations. The main, if not exclusive, target of the efferent fibers is the internal rhabdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号