首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Copper deficiency has been reported to be associated withdecreased cytochrome c oxidase activity, whichin turn may be responsible for theobserved mitochondrial impairment and cardiac failure. We isolatedmito-chondriafrom hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lowerthan incopper-adequate mitochondria. The residual activity paralleled coppercontent of mitochondria and also corresponded with the heme amount associated with cytochromeaa3. In fact, lower absorption in thea-band region of cytochrome aa3 was foundfor copper-deficient rat heart mitochondria. Gel electrophoresisof protein extractedfrom mitochondrial membranes allowed measurements of protein content of thecomplexes ofoxidative phosphorylation, revealing a lower content of complex IV protein incopper-deficientrat heart mitochondria. The alterations caused by copper deficiency appear to bespecific forcytochrome c oxidase. Changes were not observed for F 0 F 1 ATP synthase activity,for heme contents ofcytochrome c and b, and for protein contents of complexes I, III and V.The present study demonstrates that the alteration of cytochrome c oxidase activityobserved in copper deficiency is due to a diminishedcontent of assembled protein and that shortnessof copper impairs heme insertion into cytochrome c oxidase.  相似文献   

3.
Abstract— Copper deficiency was produced in developing rats by feeding a low copper diet to rats during gestation and lactation and providing the offspring the same diet. The progeny developed similar to those of an earlier model based on preconception depletion followed by marginal supplementation during gestation. Copper levels were greatly reduced in the brain, iron levels were slightly depressed, and no differences in zinc content were found. Electron microscopic examination of brain tissue revealed the presence of enlarge mitochondria from copper-deficient animals. Isolated mitochondria from copper-deficient rats showed a 30% reduction in the rate of both succinate and glutamate oxidation, and for glutamate, the respiratory control ratio (RCR) was decreased by 60%. Difference spectra displayed a four-fold reduction in cytochrome a+a3 and slight increases in cytochrome b, c1 and c. Enzyme analysis of isolated mitochondria revealed a five-fold decrease in cytochrome oxidase, slight increases in succinic dehydrogenase and fumarase, and small decreases in hexokinase and monoamine oxidase. No difference in peroxidation of brain lipids was evident. Determination of metabolites from fast frozen tissue suggested that the copper-deficient brain was in a more reduced state based on a doubling of both the lactate/pyruvate and α-glycerol-P/dihydroxyacetone-P ratios. Creatine-P, ATP, and ADP levels were not different.  相似文献   

4.
Immature rats were made copper deficient by feeding them a low (< 1 p. p. m.) copper diet. During the gestation and lactation periods their dams consumed the same diet. Controls received a dietary supplement of 10 p. p. m. copper. At approx 7 weeks of age, the deficient animals exhibited signs of neurological dysfunction and gross lesions of the brain. Cytochrome oxidase activity and copper content of the liver and brain were used as criteria of copper status and confirmed the existence of severe deficiency. The whole brains minus cerebella of the deficient animals contained approx 30% less dopamine and norepinephrine than those of the controls. The tyrosine hydroxylase activity was depressed more than 25% in the copper deficient brains while the superoxide dismutase activity was lowered more than 35%. There was a high correlation between the chief criterion of copper status, liver cytochrome oxidase activity, and the brain concentrations of dopamine, norepinephrine and tyrosine hydroxylase activity. The decrease in activity of tyrosine hydroxylase was sufficient to account for the lowered concentrations of the catecholamines.  相似文献   

5.
Daily administration of increasing doses intraperitoneally of 2.5-4.0 mg NaCN/kg to male Wistar rats for 5 weeks produced acute signs of poisoning immediately post-injection but no sign of chronic toxicity except lower final body weights than in control rats. CN-treated rats had less liver copper than controls, but not below the range of normality, and their liver mitochondrial membranes were 24% less able to bind adenine nucleotides than control membranes. No other biochemical or pathological sign of copper deficiency occurred. Liver cytochrome oxidase activity was normal after the 5 weeks of CN-administration, as was the ability of liver mitochondria to synthesize phospholipids. The ultrastructure of hepatocytes was normal without evidence of the enlarged, misshapen mitochondria produced by copper deficiency. Normal cytochrome oxidase activity of liver mitochondria, together with reduced liver copper levels and reduced binding affinity of mitochondrial membranes for adenine nucleotides, indicate that the membrane binding site for adenine nucleotides is not cytochrome oxidase per se but may involve copper, perhaps by virtue of its cationicity. With repeated exposure to CN- rats develop tolerance to acute poisoning. It is suggested that this may be due to the switch in glucose catabolism towards the pentose pathway at the expense of other pathways.  相似文献   

6.
Copper is an essential trace element in the maintenance of the cardiovascular system. Copper-deficient diets can elicit, in animals, structural and functional changes that are comparable to those observed in coronary heart disease. In this study, the effect of dietary-induced copper deficiency on aortic lesion development was measured by quantitative image analysis in C57BL/6 mice that are susceptible to diet-induced aortic lesions. The diets administered were severely copper deficient (0.2 mg/kg diet), marginally deficient (0.6 mg/kg diet), or copper adequate (6.0 mg/kg diet). Similarly, increased aortic lesion areas and elevated serum cholesterol were demonstrated in both deficient groups, compared with the copper-adequate group. Evidence for graded differences in copper status among the dietary groups was shown by the dose-response increase in liver copper concentration, copper-zinc superoxide dismutase and cytochrome-c oxidase activities, together with serum caeruloplasmin oxidase with increasing intakes of dietary copper. Despite the difference in copper status between the copper marginal and severely deficient groups, similar lesions found in both groups of mice suggest a threshold effect of copper deficiency on lesion formation.  相似文献   

7.
As part of an investigation of the lesions of copper (Cu) deficiency a study was undertaken of the copper, iron, cytochrome and fatty acid composition of liver mitochondria from Cu deficient and Cu-adequate control rats. Cu concentrations were significantly decreased in whole liver, liver mitochondria and in blood plasma. Total iron was significantly increased in whole liver but remained at the normal level in mitochondria. Cytochrome c oxidase (EC 1.9.3.1) and its component cytochromes a and a3 were significantly reduced in liver mitochondria from Cu-deficient rats, whereas there was no effect on the concentration of cytochromes b, c1 and c. Evidence from comparisons between cytochrome c oxidase activity and the amount of enzyme present, as assessed from the mitochondrial cytochrome a and a3 content, suggests that in addition to an absolute loss of enzyme, Cu-deficiency adversely affects the efficiency of the residual enzyme. Severe Cu deficiency had no effect on 'ageing' or 'swelling' properties of liver mitochondria, indicating no marked effects on fatty acid composition. Fatty acid analyses demonstrated a slight but significant increase in docosapentenoic acid (22:5) of Cu-deficient mitochondria, but since this represents a minor component there was no change observed in the 'unsaturation index'. It was concluded that, in contrast to previous reports, Cu deficiency of the severity reported did not have a deleterious effect on the integrity and permeability of the inner mitochondrial membrane as exemplified by any qualitative modification of fatty acid constitution per se.  相似文献   

8.
The effect of protein depletion on the metabolism of body collagen and muscle protein has been investigated in young male rats fed with a protein-free diet for 14 and 28 days.

During the protein depletion, the protein content of the liver, intestine and skin decreased significantly, but the decrease of proteins was very little in the carcass, tail and bone (ossa cruris). An increase of tissue collagen in protein depletion was found in the carcass, bone, tail, skin and liver, while muscle protein in the carcass was evidently lost at a later stage of protein depletion. The increase of calcium in the bone was parallel to the increase of collagen, indicating continuous growth of the bones in spite of protein depletion. These results may indicate that the young animals continuously synthesize collagens of their special tissues from other tissue proteins even with severe protein deficiency. The metabolic responses of body collagens to dietary protein depletion in young rats have been discussed and compared with those in adult rats reported previously.  相似文献   

9.
Ceruloplasmin (Cp) is a multicopper oxidase and the most abundant copper binding protein in vertebrate plasma. Loss of function mutations in humans or experimental deletion in mice result in iron overload consistent with a putative ferroxidase function. Prior work suggested plasma may contain multiple ferroxidases. Studies were conducted in Holtzman rats (Rattus norvegicus), albino mice (Mus musculus), Cp?/? mice, and adult humans (Homo sapiens) to investigate the copper–iron interaction. Dietary copper-deficient (CuD) rats and mice were produced using a modified AIN-76A diet. Results confirmed that o-dianisidine is a better substrate than paraphenylene diamine (PPD) for assessing diamine oxidase activity of Cp. Plasma from CuD rat dams and pups, and CuD and Cp?/? mice contained no detectable Cp diamine oxidase activity. Importantly, no ferroxidase activity was detectable for CuD rats, mice, or Cp?/? mice compared to robust activity for copper-adequate (CuA) rodent controls using western membrane assay. Immunoblot protocols detected major reductions (60–90%) in Cp protein in plasma of CuD rodents but no alteration in liver mRNA levels by qRT-PCR. Data are consistent with apo-Cp being less stable than holo-Cp. Further research is needed to explain normal plasma iron in CuD mice. Reduction in Cp is a sensitive biomarker for copper deficiency.  相似文献   

10.
We previously noted strong induction of genes related to intestinal copper homeostasis (Menkes Copper ATPase (Atp7a) and metallothionein) in the duodenal epithelium of iron-deficient rats across several stages of postnatal development (Collins, J. F., Franck, C. A., Kowdley, K. V., and Ghishan, F. K. (2005) Am. J. Physiol., 288, G964-G971). We now report significant copper loading in the livers and intestines of iron-deficient rats. These findings are consistent with the hypothesis that there is increased intestinal copper transport during iron deficiency. We additionally found that hepatic Atp7b gene expression does not change with iron deficiency, suggesting that liver copper excretion is not altered. We have developed polyclonal antibodies against rat ATP7A, and we demonstrate the specificity of the immunogenic reaction. We show that the ATP7A protein is present on apical domains of duodenal enterocytes in control rats and on brush-border and basolateral membrane domains in iron-deprived rats. This localization is surprising, as previous in vitro studies have suggested that ATP7A traffics between the trans-Golgi network and the basolateral membrane. We further demonstrate that ATP7A protein levels are dramatically increased in brush-border and basolateral membrane vesicles isolated from iron-deficient rats. Other experiments show that iron refeeding partially corrects the hematological abnormalities seen in iron-deficient rats but that it does not ameliorate ATP7A protein induction, suggesting that Atp7a does not respond to intracellular iron levels. We conclude that ATP7A is involved in copper loading observed during iron deficiency and that increased intestinal copper transport is of physiological relevance, as copper plays important roles in overall body iron homeostasis.  相似文献   

11.
Rats fed a copper-deficient diet for eight weeks showed a large decrease in cytochrome c oxidase in heart, spleen, liver, lung, and pancreas but no significant change in kidney and brain. Three injections of human or rat ceruloplasmin over a five day period greatly increased cytochrome c oxidase activity in spleen, liver, heart and lung. Rats receiving CuCl2, Cu-histidine, and Cu-albumin produced a smaller and slower increase in cytochrome c oxidase compared to ceruloplasmin treated animals. In Cu-histidine treated rats, the increase in enzyme activity did not occur until after the plasma ceruloplasmin level reached a maximal value. It is concluded that ceruloplasmin functions as a primary copper transport protein from which copper atoms are transferred to cytochrome c oxidase and probably other copper containing proteins.  相似文献   

12.
We sought to identify novel genes involved in intestinal iron absorption by inducing iron deficiency in rats during postnatal development from the suckling period through adulthood. We then performed comparative gene chip analyses (RAE230A and RAE230B chips; Affymetrix) with cRNA derived from duodenal mucosa. Real-time PCR was used to confirm changes in gene expression. Genes encoding the apical iron transport-related proteins [divalent metal transporter 1 (DMT1) and duodenal cytochrome b] were strongly induced at all ages studied, whereas increases in mRNA encoding the basolateral proteins iron-regulated gene 1 and hephaestin were observed only by real-time PCR. In addition, transferrin receptor 1 and heme oxygenase 1 were induced. We also identified induction of novel genes not previously associated with intestinal iron transport. The Menkes copper ATPase (ATP7a) and metallothionein were strongly induced at all ages studied, suggesting increased copper absorption by enterocytes during iron deficiency. We also found significantly increased liver copper levels in 7- to 12-wk-old iron-deficient rats. Also upregulated at most ages examined were the sodium-dependent vitamin C transporter, tripartite motif protein 27, aquaporin 4, lipocalin-interacting membrane receptor, and the breast cancer-resistance protein (ABCG2). Some genes also showed decreased expression with iron deprivation, including several membrane transporters, metabolic enzymes, and genes involved in the oxidative stress response. We speculate that dietary iron deprivation leads to increased intestinal copper absorption via DMT1 on the brush-border membrane and the Menkes copper ATPase on the basolateral membrane. These findings may thus explain copper loading in the iron-deficient state. We also demonstrate that many other novel genes may be differentially regulated in the setting of iron deprivation.  相似文献   

13.
Release of iron from enterocytes and hepatocytes is thought to require the copper-dependent ferroxidase activity of hephaestin (Hp) and ceruloplasmin (Cp), respectively. In swine, copper deficiency (CD) impairs iron absorption, but whether this occurs in rats is unclear. By feeding a diet deficient in copper, CD was produced, as evidenced by the loss of copper-dependent plasma ferroxidase I activity, and in enterocytes, CD reduced copper levels and copper-dependent oxidase activity. Hematocrit was reduced, and liver iron was doubled. CD reduced duodenal mucosal iron and ferritin, whereas CD increased iron absorption. Duodenal mucosal DMT1-IRE and ferroportin1 expression remained constant with CD. When absorption in CD rats was compared with that seen normally and in iron-deficient anemic animals, strong correlations were found among mucosal iron, ferritin, and iron absorption, suggesting that the level of iron absorption was appropriate given that the erythroid and stores stimulators of iron absorption are opposed in CD. Because CD reduced the activity of Cp, as evidenced by copper-dependent plasma ferroxidase I activity and hepatocyte iron accumulation, but iron absorption increased, it is unlikely that the ferroxidase activity of Hp is important and suggests another function for this protein in the export of iron from the enterocyte during iron absorption. Also, the copper-dependent ferroxidase activity of Cp does not appear important for iron efflux from macrophages, because Kupffer cells of the liver and nonheme iron levels of the spleen were normal during copper deficiency, suggesting another role for Cp in these cells.  相似文献   

14.
Effect of dietary iron deficiency on mineral levels in tissues of rats   总被引:3,自引:0,他引:3  
To clarify the influence of iron deficiency on mineral status, the following two synthetic diets were fed to male Wistar rats: a control diet containing 128 micrograms iron/g, and an iron-deficient diet containing 5.9 micrograms iron/g. The rats fed the iron-deficient diet showed pale red conjunctiva and less reactiveness than the rats fed the control diet. The hemoglobin concentration and hematocrit of the rats fed the iron-deficient diet were markedly less than the rats fed the control diet. The changes of mineral concentrations observed in tissues of the rats fed the iron-deficient diet, as compared with the rats fed the control diet, are summarized as follows: . Iron concentrations in blood, brain, lung, heart, liver, spleen, kidney, testis, femoral muscle, and tibia decreased; . Calcium concentrations in blood and liver increased; calcium concentration in lung decreased; . Magnesium concentration in blood increased; . Copper concentrations in blood, liver, spleen and tibia increased; copper concentration in femoral muscle decreased; . Zinc concentration in blood decreased; . Manganese concentrations in brain, heart, kidney, testis, femoral muscle and tibia increased. These results suggest that iron deficiency affects mineral status (iron, calcium, magnesium, copper, zinc, and manganese) in rats.  相似文献   

15.
Selenium is a main component of glutathione peroxidase (GPX), a key antioxidant enzyme. Other elements, such as zinc, copper, manganese and iron, are also involved in the pathogenesis of oxidative damage as well as in other important metabolic pathways. The effects of selenium supplementation on the metabolism of these elements have yield controversial results .The aim of this study is to analyse the effects of selenium supplementation on liver, muscle and urinary excretion of zinc, copper, iron and manganese in a situation of oxidative stress, such as protein deficiency. The experimental design included four groups of adult male Sprague–Dawley rats, which received the Lieber–DeCarli control diet, an isocaloric 2 % protein-containing diet and another similar two groups to which selenomethionine (6 mg/l liquid diet) was added. After sacrifice (5 weeks later), muscle, liver and serum selenium were determined, as well as muscle, liver and urinary zinc, copper, manganese and iron and liver GPX activity and liver malondialdehyde. Selenium addition led to decreased liver copper, increased muscle copper, increased copper excretion and increased liver iron, whereas zinc and manganese parameters were essentially unaltered. Muscle, liver and serum selenium were all significantly correlated with liver GPX activity.  相似文献   

16.
Platelets from copper-deficient rats have been used as a model to investigate the role of copper in receptor-mediated cellular responses. Copper deficiency doubles the rate of dense granule secretion and increases myosin association with the platelet cytoskeleton following thrombin stimulation. Mechanisms underlying the effects of copper deficiency on thrombin-induced signals that elicit dense granule secretion involve suppression of protein kinase C activity and impairment of Ca2+ release from intracellular stores. Copper deficiency also reduces the cellular GTP content of platelets. This may limit receptor effector coupling through GTP-dependent regulatory proteins leading to protein kinase C activation and the release of Ca2+ from intracellular stores. The reduction in GTP content during copper deficiency results from its utilization to maintain cellular ATP levels in response to severely inhibited cytochrome c oxidase activity in platelet mitochondria. Thus, the role of copper in maintaining normal signal transduction may be indirectly related to its biological function in mitochondria.  相似文献   

17.
The hypothesis was tested that there are interactions of marginal copper and vitamin A deficiency regarding iron and zinc status. Copper restriction (1 vs 5 mg Cu/kg diet) significantly lowered copper concentrations in plasma and tissues of rats and reduced blood hemoglobin, hematocrit, and iron concentrations in tibia and femur, but raised iron concentrations in liver. Vitamin A restriction (0 vs 4000 IU vitamin A/kg diet) reduced plasma retinol concentrations and induced a fall of blood hemoglobin and hematocrit. Neither copper nor vitamin A restriction for up to 42 d affected feed intake and body wt gain. There were no interrelated effects of vitamin A and copper deficiency on iron status. Copper deficiency slightly depressed liver, spleen, and kidney zinc concentrations. Vitamin A deficiency lowered zinc concentrations in heart, but only when the diets were deficient in copper.  相似文献   

18.
19.
Mineral (phosphorus, sulfur, potassium, calcium, magnesium, iron, zinc, copper, and manganese) concentrations were measured in plasma, and several tissues from female Wistar rats (young: 3-wk-old; mature: 6-mo-old) were fed on a dietary regimen designed to study the combined or singular effects of age and dietary protein on mineral status. Three diets, respectively, contained 5, 15, and 20% of bovine milk casein. Nephrocalcinosis chemically diagnosed by increased calcium and phosphorus in kidney was prevented in rats fed a 5% protein diet. Renal calcium and phosphorus were more accumulated in young rats than mature rats. A 5% protein diet decreased hemoglobin and blood iron. The hepatic and splenic iron was increased by a 5% protein diet in mature rats but was not altered in young rats. Mature rats had higher iron in brain, lung, heart, liver, spleen, kidney, muscle, and tibia than young rats. A 5% protein diet decreased zinc in plasma and liver. Zinc in tibia was increased with dietary protein level in young rats but was not changed in mature rats. A 5% protein diet decreased copper concentration in plasma of young rats but not in mature rats. Mature rats had higher copper in plasma, blood, brain, lung, heart, liver, spleen, and kidney than young rats. With age, manganese concentration was increased in brain but decreased in lung, heart, liver, kidney, and muscle. These results suggest that the response to dietary protein regarding mineral status varies with age.  相似文献   

20.
Eight weeks of latent iron deficiency in weaned rats maintained on an experimental low iron content diet (18-20 mg/kg) did not significantly alter the packed cell volume and hemoglobin concentration; however, the hepatic and brain nonheme iron contents decreased by 66% and 21% (p less than 0.001), respectively. The tryptophan concentration decreased by 31% and 34% in liver and brain, respectively, in rats on experimental diet (p less than 0.01). The brain 5-hydroxytryptamine and 5-hydroxyindoleacetic acid contents were reduced by 21% and 23% (p less than 0.01 and p less than 0.02), respectively. However, in the brain, weight, protein, DNA, and the activities of monoamine oxidase, aldehyde dehydrogenase, and liver tryptophan oxygenase were found to remain unaltered. When rehabilitated with a diet containing 390 mg/kg iron, rats previously maintained on the experimental diet for 2 weeks showed partial recovery in tryptophan levels both in liver and brain. However, brain 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels remained unaltered. The hepatic iron content improved without any change in brain iron content. The latent iron deficiency produced significant alterations in the metabolism of 5-hydroxytryptamine and brain iron content that could not be recovered 2 weeks after the iron rehabilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号