首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of purification up to homogenous states and properties of NADP-reductase of purple bacteria Thiocapsa roseopersicina, strain BBS, are described. The molecular weight of NADP-reductase is about 47 000; it is flavoprotein consisting of two subunits. Atebrim and chloromercury bensoate inhibit the activity of NADP-reductase (34% and 33--60%, respectively). The enzyme is specific to NADPH; it catalyzes menadion-reductase reaction, diaphorase reaction of benzyl viologen reduction, oxidation of reduced benzyl viologen in the presence of NADP, reduction of ferredoxin and cytochrome c in the presence of NADPH, but it is not capable to catalyze transhydrogenase reaction.  相似文献   

2.
I N Gogotov 《Biochimie》1978,60(3):267-275
Purple bacteria Rhodospirillum rubrum and Thiocapsa roseopersicina form two enzymes, hydrogenase and nitrogenase, which participate in hydrogen metabolism. H2 photoproduction in these bacteria is associated mainly or completely with the action of nitrogenase. The soluble and membrane-bound hydrogenases of T. roseopersicina have similar physicochemical properties (mol. weight, subunit composition, N-terminal amino acids, Fe2+ and S2- content, pl. Eo'). In comparison with other hydrogenases the enzyme from R. rubrum and T. roseopersicina evolve H2 with high rate from reduced cytochrome c3, but not from ferredoxins. H2 production and N2 fixation take place in the presence of NAD(P)H. NADP-reductase, ferredoxin and cytochrome c3 participate in this reaction. Possible relationships between hydrogenase-nitrogenase in the metabolism of molecular hydrogen are discussed.  相似文献   

3.
Hydrogenases of phototrophic microorganisms   总被引:4,自引:0,他引:4  
I N Gogotov 《Biochimie》1986,68(1):181-187
This review surveys recent work done in the laboratory of the author and related laboratories on the properties and possible practical applications of hydrogenases of phototrophic microorganisms. Homogeneous hydrogenase preparations were obtained from purple non-sulfur (Rhodospirillum rubrum S1, Rhodobacter capsulatus B10) and purple sulfur (Chromatium vinosum D, Thiocapsa roseopersicina BBS) bacteria, and from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum L; highly purified hydrogenase samples were prepared from the cyanobacterium Anabaena cylindrica and from the green alga Chlamydomonas reinhardii. It was shown that hydrogenases of R. capsulatus and T. roseopersicina contain Ni and Fe-S cluster. The cytochromes of the c or b type serve as native electron acceptors for the hydrogenases of the purple bacteria and cyanobacteria; rubredoxin or cytochrome c for the hydrogenase of the green sulfur bacterium; and ferredoxin for Ch. reinhardii hydrogenase. The hydrogenase of T. roseopersicina BBS reversibly activates H2 at Eh less than -290 mV (pH 7), whereas those from R. capsulatus and from C. limicola f. thiosulfatophilum exhibit their maximum activity at Eh greater than -300 mV and are thus favourable only for the H2 uptake. Hydrogenase synthesis in different phototrophs depends on pO2, H2 concentrations and organic substrates. Organic compounds, which serve as electron donors and carbon sources, repress hydrogenase synthesis in R. rubrum, R. capsulatus and in Ectothiorhodospira shaposhnikovii when present at high concentrations. The synthesis of T. roseopersicina hydrogenase is constitutive. H2 notably stimulates hydrogenase activity in R. capsulatus. The synthesis of hydrogenase in R. sphaeroides 2R occurs only in the presence of H2 and does not depend on the presence of organic compounds in the medium.  相似文献   

4.
The pH dependences of activities of homogenous hydrogenases of Thiocapsa roseopersicina and Desulfomicrobium baculatum in the reaction of hydrogen uptake in solution in the presence of benzyl viologen and the pH dependences of catalytic currents of hydrogen oxidation by electrodes on which these hydrogenases were immobilized were compared. Maximal activities of the hydrogenases from T. roseopersicina and D. baculatum in the reaction hydrogen uptake in solution were observed at pH 9.5 and 8.5, respectively. However, the steady-state current caused by catalytic uptake of hydrogen was maximal for the T. roseopersicina hydrogenase-containing electrode at pH 5.5-6.5 under overvoltage of 30-60 mV, whereas for electrodes with D. baculatum hydrogenase it was maximal at pH 6.0-6.5. Analysis of these data suggests that pH-dependent changes in the hydrogenase activities in solution during hydrogen uptake are due not only to the effect of proton concentration on the enzyme conformation or protonation of certain groups of the enzyme active center, but they are rather indicative of changes in free energy of the reaction accompanying changes in pH.  相似文献   

5.
Hydrogenase from Escherichia coli exhibited low activity when assayed for hydrogen:methyl viologen reductase activity and no activity when assayed for hydrogen-uptake activity with acceptors of high redox potential (dichloroindophenol, methylene blue). Nor did the enzyme as isolated catalyse proton-tritium exchange activity. Incubation under hydrogen resulted in an increase in hydrogen-uptake activity with methyl viologen and the appearance of hydrogen-uptake activity with dichloroindophenol and methylene blue. Following such treatment, the enzyme also readily catalysed isotope exchange. This process is interpreted as the conversion of the hydrogenase from an inactive 'unready' state to an 'active' state. Oxidation of active hydrogenase with dichloroindophenol caused conversion to a state resembling that of the enzyme as isolated but capable of more rapid activation under reducing conditions. This form is termed the 'ready' state. Such interconversions have been reported for hydrogenases from Desulfovibrio gigas and D. desulfuricans, and the possibility that they constitute a regulatory mechanism suggested.  相似文献   

6.
Purified malate dehydrogenases from four species of non-sulphur purple phototrophic bacteria were examined for their heat-stability, amino acid composition and antigenic relationships. Malate dehydrogenase from Rhodospirillum rubrum, Rhodobacter capsulatus and Rhodomicrobium vannielii (which are all tetrameric proteins) had an unusually high glycine content, but the enzyme from Rhodocyclus purpureus (which is a dimer) did not. R. rubrum malate dehydrogenase was extremely heat-stable relative to the other enzymes, withstanding 65 degrees C for over 1 h with no loss of activity. By contrast, malate dehydrogenase from R. vannielii lost activity above 35 degrees C, and that from R. capsulatus above 40 degrees C. Amino acid compositional relatedness and immunological studies indicated that tetrameric phototrophic-bacterial malate dehydrogenases were highly related to one another, but only distantly related to the tetrameric enzyme from Bacillus. This suggests that, despite differences in their thermal properties, the tetrameric malate dehydrogenases of non-sulphur purple bacteria constitute a distinct biochemical class of this catalyst.  相似文献   

7.
During catalysis, all Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes produce traces of several by-products. Some of these by-products are released slowly from the active site of Rubisco from higher plants, thus progressively inhibiting turnover. Prompted by observations that Form I Rubisco enzymes from cyanobacteria and red algae, and the Form II Rubisco enzyme from bacteria, do not show inhibition over time, the production and binding of catalytic by-products was measured to ascertain the underlying differences. In the present study we show that the Form IB Rubisco from the cyanobacterium Synechococcus PCC6301, the Form ID enzyme from the red alga Galdieria sulfuraria and the low-specificity Form II type from the bacterium Rhodospirillum rubrum all catalyse formation of by-products to varying degrees; however, the by-products are not inhibitory under substrate-saturated conditions. Study of the binding and release of phosphorylated analogues of the substrate or reaction intermediates revealed diverse strategies for avoiding inhibition. Rubisco from Synechococcus and R. rubrum have an increased rate of inhibitor release. G. sulfuraria Rubisco releases inhibitors very slowly, but has an increased binding constant and maintains the enzyme in an activated state. These strategies may provide information about enzyme dynamics, and the degree of enzyme flexibility. Our observations also illustrate the phylogenetic diversity of mechanisms for regulating Rubisco and raise questions about whether an activase-like mechanism should be expected outside the green-algal/higher-plant lineage.  相似文献   

8.
Abstract The affinities for sulfide and acetate under mixotrophic conditions have been determined for the brown Chlorobium phaeobacteroides and the purple Thiocapsa roseopersicina isolated from a bloom in Lake Kinneret (Israel) at a depth of about 18 m. C. phaeobacteroides exhibited a far higher affinity for sulfide than T. roseopersicina . For acetate, the opposite was observed.
In light-limited continuous cultures, C. phaeobacteroides preferentially used sulfide, whereas in mixotrophic cultures of T. roseopersicina sulfide could be detected without detectable acetate. Competition experiments under increasingly severe light limitation resulted in co-existence of the two strains. Relatively high light intensities resulted in a dominance of T. roseopersicina over C. phaeobacteroides , whereas at lower intensities C. phaeobacteroides became dominant. However, at light intensities below 2 μEin · m−2· s−1, T. roseopersicina was completely excluded.
At low light intensities, C. phaeobacteroides is able to grow at a much higher rate than T. roseopersicina . The maintenance rate constant μe of C. phaeobacteroides is −0.001 h−1, whereas that of T. roseopersicina is −0.011 h−1. However, high light intensities inhibit the growth rate of C. phaeobacteroides , but not that of T. roseopersicina .
The explanation of the high numbers of C. phaeobacteroides in Lake Kinneret appears to be the combination of low light intensities and low sulfide concentrations. As a result, the incorporation of acetate is enhanced. The low numbers of T. roseopersicina can be explained by the high maintenance energy requirements of this organism, which exceed the available light at the depth of the bloom.  相似文献   

9.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

10.
11.
The low potential c-type cytochrome from the phototrophic purple sulphur bacterium Thiocapsa roseopersicina, strain BBS was isolated in electrophoretically homogeneous state. The bulk of the cytochrome (approximately 90%) after disruption of the cells remained in the membrane fraction. The absorption spectrum of the cytochrome was characterized by the maxima at 420, 523 and 552 nm in the reduced state and at 408 nm in the oxidized one. The cytochrome interacted with CO in the reduced state. The molecular weight of the cytochrome is 50 000. The cytochrome contains great amounts of phenylalanine, leucine, valine, aspartic and glutamic acids and can be reduced by dithionite but not by cysteine, sulfide or ascorbate. Besides, the cytochrome can also be reduced by NAD(P)H in the presence of NAD(P)-reductases of T. roseopersicina, when ferredoxin of Spirulina platensis or benzyl viologen are added to the reaction mixture. The cytochrome can act as an electron donor (acceptor) for T. roseopersicina hydrogenase.  相似文献   

12.
A soluble enzyme preparation, which catalyses the polymerization of mannose, was obtained by Triton X-100 extraction of a particulate fraction derived from Phaseolus aureus hypocotyls. The product that resulted when GDP-alpha-d-mannose was used as a substrate was a beta-(1-->4)-linked mannan, about three-quarters of which was alkali-insoluble. The mannose-polymerizing enzyme activity was at least as great in the soluble preparation as in the particulate preparation, and the specific activity of the solubilized enzyme was greater by a factor of at least 3.5. Kinetic studies of the soluble enzyme indicate that the apparent K(m) is 55-62mum, and a disproportionate increase in rate is observed at high concentrations. GDP-alpha-d-glucose is a strong competitive inhibitor of the mannose-polymerizing reaction, with an apparent K(i) of 6.2mum. The soluble enzyme is relatively unstable, losing about two-thirds of its original activity in 5h at 0 degrees C or in 24h at -20 degrees C. A solvent (acetone, butanol, diethyl ether)-extracted particulate preparation, which also exhibits the same enzyme activity, is more stable, retaining full activity for at least 5 days at -20 degrees C. There was no polymerizing-enzyme activity in the soluble enzyme preparation when UDP-d-glucose, UDP-d-galactose, UDP-d-xylose, UDP-l-arabinose or UDP-d-glucuronic acid were used as substrates. However, the soluble enzyme preparation would catalyse the polymerization of glucose, with GDP-d-glucose as substrate.  相似文献   

13.
It was found that the cytoplasm of light-grown cells of Rhodospirillum rubrum could catalyze the reduction of methyl viologen (MV) (Em, 7 = -0.44 V) by NADH and NADPH. In the present study, the enzyme capable of catalyzing MV reduction by NADH (NADH-MV reductase) was purified 1,500-fold from an extract of cells with a yield of 4.4%. The purification procedure comprised (NH4)2SO4 fractionation, and chromatographies on Sepharose CL-6B, DEAE-Sepharose CL-6B, phenyl-Sepharose CL-4B, Blue-Cellulofine, and TSK-Gel G3000SW. Two NADPH-MV reductases were separated during the purification. The NADH-MV reductase obtained was nearly homogeneous, as judged on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The enzyme has a molecular weight of 220,000 and an isoelectric point of 4.8; it is composed of four subunits with a molecular weight of 57,000, and is bound with about 1 mol FAD/mol subunit. The activity is optimum at pH 8. The Km values for NADH and MV are 115 microM and 1.3 mM, respectively, with a molecular activity of 13,000 min-1. The activity was stimulated 2.4-fold in the presence of 20-100 mM ammonium ions. The enzyme also catalyzed the reduction of benzyl viologen, methylene blue and 2,6-dichlorophenol-indophenol (Em, 7 = -0.36, +0.011, and +0.217 V, respectively) at comparable rates. The ratios of the activity with NADH to that with NADPH were 80, 133, 41, and 5.5 with MV, benzyl viologen, methylene blue and 2,6-dichlorophenolindophenol, respectively. The enzyme was significantly stable in the presence of both 5mM 2-mercaptoethanol and 20% (w/v) glycerol. The activity was not appreciably influenced by the presence of 2 M urea, although the reagent caused dissociation to the subunits.  相似文献   

14.
The allosteric enzyme aspartate carbamoyltransferase of Escherichia coli consists of six regulatory chains (R) and six catalytic chains (C) in D3 symmetry. The less active T conformation, complexed to the allosteric inhibitor CTP has been refined to 2.6 A (R-factor of 0.155). We now report refinement of the more active R conformation, complexed to the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) to 2.4 A (R-factor of 0.165, root-mean-square deviations from ideal bond distances and angles of 0.013 A and 2.2 degrees, respectively). The antiparallel beta-sheet in the revised segment 8-65 of the regulatory chain of the T conformation is confirmed in the R conformation, as is also the interchange of alanine 1 with the side-chain of asparagine 2 in the catalytic chain. The crystallographic asymmetric unit containing one-third of the molecule (C2R2) includes 925 sites for water molecules, and seven side-chains in alternative conformations. The gross conformational changes of the T to R transition are confirmed, including the elongation of the molecule along its threefold axis by 12 A, the relative reorientation of the catalytic trimers C3 by 10 degrees, and the rotation of the regulatory dimers R2 about the molecular twofold axis by 15 degrees. No changes occur in secondary structure. Essentially rigid-body transformations account for the movement of the four domains of each catalytic-regulatory unit; these include the allosteric effector domain, the equatorial (aspartate) domain, and the combination of the polar (carbamyl phosphate) and zinc domain, which moves as a rigid unit. However, interfaces change, for example the interface between the zinc domain of the R chain and the equatorial domain of the C chain, is nearly absent in the T state, but becomes extensive in the R state of the enzyme; also one catalytic-regulatory interface (C1-R4) of the T state disappears in the more active R state of the enzyme. Segments 50-55, 77-86 and 231-246 of the catalytic chain and segments 51-55, 67-72 and 150-153 of the regulatory chain show conformational changes that go beyond the rigid-body movement of their corresponding domains. The localized conformational changes in the catalytic chain all derive from the interactions of the enzyme with the inhibitor PALA; these changes may be important for the catalytic mechanism. The conformation changes in segments 67-72 and 150-153 of the regulatory chain may be important for the allosteric control of substrate binding. On the basis of the conformational differences of the T and R states of the enzyme, we present a plausible scheme for catalysis that assumes the ordered binding of substrates and the ordered release o  相似文献   

15.
Challenge of Rhodobacter capsulatus cells with the superoxide propagator methyl viologen resulted in the induction of a diaphorase activity identified as a member of the ferredoxin (flavodoxin)-(reduced) nicotinamide adenine dinucleotide phosphate (NADP(H)) reductase (FPR) family by N-terminal sequencing. The gene coding for Rhodobacter FPR was cloned and expressed in Escherichia coli. Both native and recombinant forms of the enzyme were purified to homogeneity rendering monomeric products of approximately 30 kDa with essentially the same spectroscopic and kinetic properties. They were able to bind and reduce Rhodobacter flavodoxin (NifF) and to mediate typical FPR activities such as the NADPH-driven diaphorase and cytochrome c reductase.  相似文献   

16.
The effects of some metal ions on the activity and activation of Thiocapsa roseopersicina hydrogenase have been studied. Inhibitory effects of Ni2+ and Cd2+ on the catalytic activity of the enzyme were reversible and competitive with respect to methyl viologen (MV) in the reaction of hydrogen oxidation. The affinity of these metal ions to the enzyme increased significantly with increasing pH, suggesting that their interactions are determined by electrostatic forces. Cu2+ and Hg2+ irreversibly inhibited the hydrogenase activity. A decrease in absorption of hydrogenase at 400 nm in the presence of these metal ions is indicative of the destruction of the FeS cluster in the enzyme.  相似文献   

17.
朱瑞艳  林涛 《微生物学通报》2009,36(12):1939-1943
本研究设计了一种2 L分体式管式光合反应器, 并研究了深红红螺菌(Rhodospirillum rubrum)吸氢酶缺失突变株在该反应器中分别利用人工光源(持续光照与光暗交替)和自然光的产氢规律。结果表明在人工光照条件下R. rubrum的产氢可维持5 d, 持续光照和光暗交替条件下(12 h: 12 h)的氢产量可分别达到5752 mL/PBR ± 158 mL/PBR和5012 mL/PBR ± 202 mL/PBR; 自然光条件下, 最适产氢光照强度为30000 Lux~40000 Lux; 在此光照条件下, R. rubrum产氢可维持6 d~ 10 d, 最高氢产量可达到2800 mL/PBR。尽管利用自然光的氢产量比利用人工光源氢产量低, 但是利用自然光的产氢比较经济, 并且该光合产氢系统操作简单, 该工艺有望开发为低成本的光合细菌产氢技术。  相似文献   

18.
The method of solution and puridication of hydrogenase from chromatophores of purpur sulphur bacteria Thiocapsa roseopersicina strain BBS are described. Hydrogenase molecular weight is 73000. It contains 4,4 mole S2- and 3.1 mole Fe2+ per mole of protein; pI 4.15. The enzyme absorption spectrum has the maximun et 400-410 nm, which is characteristic of proteins containing non-haem iron. Membrane--linked enzyme as well as soluble hydrogenase of that microorganism is characterized by high thermal stability: inactivation occurs at the temperature above 78 degrees C when the optimal temperature for that enzyme is 70 degrees C. Homogenous enzyme catalyses D2--H2O exchange reaction, reversible redox reaction of methyl viologene and benzyl viologene.  相似文献   

19.
Comparative study on proteinase R, T, and K from Tritirachiam album limber   总被引:1,自引:0,他引:1  
Proteinase R and T purified from Tritirachiam album limber were characterized in comparison with proteinase K using circular dichroism (CD), enzyme activity, thermal melting, and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). CD analysis suggested that these three proteins possess some beta-sheet structure, with little alpha-helix except for proteinase R which showed about 14% alpha-helix. SDS-PAGE and gel filtration in 0.1% SDS indicated that proteinase T and K are resistant to SDS-induced unfolding similar to subtilisin. Thermal denaturation experiments showed the melting temperature for proteinase T to be 67 degrees and that for proteinase K to be 65 degrees in the absence of Ca2+, with higher melting temperatures in the presence of Ca2+. However, the enzyme activities of proteinase T and R were significantly lower than those of proteinase K.  相似文献   

20.
Some properties of a hydrogenase from the recently isolated phototrophic sulfur bacterium Lamprobacter modestohalophilus strain Syvash and its resistance to a number of inactivating factors have been investigated. The enzyme consists of two subunits, 64 and 30 kD; pI = 4.5. The optimal pH was 8.5-9.5 for hydrogen uptake and 4.0 for H2 evolution. Hydrogenase preparations were resistant to the effects of O2, CO, and temperature, revealing high stability under storage. A considerable inactivation of the enzyme was observed at temperatures above 80 degrees C; the temperature optimum of methyl viologen reduction by H2 was 85 degrees C. Inhibitory effects of Ni2+, Cd2+, and Mg2+ on the hydrogenase activity were shown to be reversible and competitive with respect to methyl viologen in the hydrogen oxidation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号