首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
稳定性碳同位素在植物生理生态研究中的应用   总被引:19,自引:0,他引:19  
稳定性碳同位素~(13)C/~(12)C比率是研究植物光合作用及有关的物质代谢、水分关系和生态系统中种间关系、进化及对环境的响应等的有效指标。δ~(13)C值与细胞间CO_2浓度及水分利用效率之间有一定的数量关系。光合作用过程中对碳同位素的辨别力主要是不同的CO_2扩散阻抗和羧化反应速率引起的结果。  相似文献   

2.
三个番木瓜栽培种“岭南”、“2×0.7”和“4×2”的净光合率随入射光强度增高而增大。光合作用光饱和现象出现在0.7~0.8m mol m~(-2) s~(-1)。量子产额(mol CO_2/mol吸收量子)为0.042~0.048, 相近于已测定过的C_3植物。气孔对CO_2的传导率和蒸腾作用亦随入射光强度增高而增大。细胞间CO_2浓度在叶温25℃时为260μl.1~(-1),在近于光补偿点时为最大。蒸腾作用和净CO_2同化率皆随入射量子流增高而增大。 三个栽培品种木瓜的光合作用最适温度为25℃。蒸腾作用及气孔对CO_2及水分丧失的传导率以35℃为最大。光合作用的补偿点为50μl·l~(-1),相近于多数C_3植物。气孔对细胞间CO_2浓度变化的反应敏感。 水蒸汽压亏缺(VPD)从6毫巴增至26毫巴时,“4×2”和“岭南”的净光合作用降低 32~33%,“2×0.7”则降低19%。当VPD在19毫巴时,蒸腾作用最大。VPD增大则降低水分利用效率。结果亦表明气孔传导率对限制木瓜叶子光合作用的意义。  相似文献   

3.
本节教材内容包括:植物生活需要水分,细胞吸水原理,根从土壤中吸收水分,外界条件对根吸收水分的影响和对植物进行合理灌溉的道理。根是绿色开花植物的营养器官之一,其结构与功能是统一的。根的主要功能是将植物体固定在土壤中,以及从土壤中吸收水分和无机盐。本节课要讲的是植物的根对水分的吸收。要想让学生理解根吸收水分的原理和过程,必须先让学生理解细胞吸水的原理。由于学生对细胞吸水的  相似文献   

4.
报道了美国生物圈二号内生长在高CO_2浓度下(>2200μmol·mol~(-1))4.5年后的5种热带雨林植物和5种荒漠植物气孔导度、蒸腾速率和水分利用效率的变化。结果表明:热带雨林植物在CO_2浓度为350~400μmol·mol~(-1)时的气孔导度、蒸腾速率和水分利用效率分别为:(127.4±65.6)mmol·m~(-2)·s~(-1)、(2.04±0.61)mmol·m~(-2)·s~(-1)和(2.90±0.55)μmol CO_2·mmol~(-1) H_2O,而在700~820μmol·mol~(-1)时为(61.3±30.5)mmol·m~(-2)·s~(-1)、(1.54±0.65)mmol·m~(-2)·s~(-1)和(8.45±2.71)μmol CO_2·mmol~(-1) H_2O;荒漠植物气孔导度和蒸腾速率则分别由CO_2 320~400μmol·mol~(-1)时的(142.8±94.6)和(2.09±0.71)下降到820~850μmol·mol~(-1)时的(57.7±35.8)和(1.36±0.52)mmol·m~(-2)·s~(-1),水分利用效率由(4.69±1.39)上升到(9.68±1.61)μmol CO_2·mmol~(-1) H_20。在低CO_2浓度时植物的气孔导度、蒸腾速率和水分利用效率受光照强度的影响较高CO_2浓度时明显,一般雨林植物三项指标在光照强度为500μmol·m~(-2)·s~(-1)时达到饱和,而荒漠植物在1000μmol·m~(-2)·s~(-1)时达到饱和。不同植物中,以荒漠C_3植物粉蓝烟草(Nicotiana glau-ca Grah.)的气孔导度、蒸腾速率和水分利用效率  相似文献   

5.
根的分泌物及其生理作用   总被引:1,自引:0,他引:1  
植物根的生命活动极为活跃。植物的根不仅从土壤中吸收水分和无机盐,还吸收二氧化碳和一些有机化合物,如氨基酸、核苷酸、碳水化合物以及尿素等。根能把吸收的物质进行转化、改造、合成一些植物本身生活所必需的物质,如氨基酸、酰胺、细胞分裂素和赤霉素等,还有一些植物激素、生物碱等。除此,植物根还具有分泌功能,可将一些物质排出体外。众所周知,如果把植物栽培在含有同位素~(14)[CO_2]的大气中,在光照下,植株通过光合作用很容易标记上~(14)C,这种方法早已应用于研究植物体内物质的转移。在根的分泌物研究工作中也成功地应用了这种方法。例如:采用~(14)CO_2  相似文献   

6.
目前,国内出版的主要《植物生理学》教材,在“光合作用”一章中均谈到了CO_2补偿点,可能受篇幅所限,又都未讨论大多数栽培作物CO_2补偿点的稳定性及其与环境条件的关系。笔者根据以往所搜集的资料,仅就此问题简述如下,供同行们在教学中参考。CO_2补偿点是衡量植物同化CO_2能力强弱的重要生理指标。实际测定发现,在正常条件下,大多  相似文献   

7.
小麦等C_3植物的叶片在光下经无CO_2或低CO_2气体处理后,通入高CO_2气体,光合强度出现“升、降、升”的波动,而玉米等C_4植物无此现象。不同植物的光合波动幅度不同。强光、高CO_2、低O_2等能缩短第一次光合上升时间,增大光合下降幅度;而低CO_2、高O_2等则减少光合下降幅度。此现象与RuBP及ATP的含量变化有关。  相似文献   

8.
蒸腾系数可以反映植物对水分的利用效率。它是研究植物与水分关系的重要生理指标之一。农林生产上常以植物在某-生育期干重增长量、大体推算其需水总量来计算蒸腾系数,不仅费时费力,且精度较低。利用红外线CO_2分析仪定温,定湿同时测得光合  相似文献   

9.
大气CO_2浓度升高对植物的影响是目前植物生态学研究中普遍关注的问题。以往的研究主要关注植物地上部分叶解剖结构及生理功能的改变,而对根解剖结构和生理功能变化以及根与叶变化之间潜在联系的研究较少。该文以三年生红松(Pinus koraiensis)幼苗为研究对象,通过CO_2浓度倍增(从350μmol·mol~(–1)增加到700μmol·mol~(–1))试验,研究当年生针叶和根尖解剖结构及生理功能的变化。结果表明:(1)CO_2浓度倍增处理的红松幼苗,气孔密度显著降低,叶肉组织面积、木质部及韧皮部面积明显增加;(2)CO_2浓度倍增导致红松幼苗根尖直径增粗,皮层厚度和层数显著增加,管胞直径变小;(3)高CO_2浓度处理下,叶气孔导度和蒸腾速率降低,光合速率和水分利用效率提高,同时根尖的导水率显著下降,但管胞的抗栓塞能力显著提高。这些结果显示,叶和根解剖结构及生理功能在CO_2浓度升高条件下具有一致的响应。未来研究中应该同时关注全球气候变化对植物地上和地下器官结构与功能的影响。  相似文献   

10.
具有自养代谢能力的微生物将无机碳同化为有机碳,使其他生物无法获得的碳成为全球碳循环的核心组成部分。在现存生物圈中,卡尔文-本森循环是许多原核生物和所有植物将CO_2固定到生物量中的主要代谢机制,然而却忽视了原核生物中的其它5种自养代谢途径。对其他自养代谢途径的研究发现,这5种途径均以乙酰-Co A为中心将CO_2同化为生命所需的有机物。该文从分子水平上系统阐述了六种自养代谢途径的CO_2固定机理并对CO_2的固定对自然界的作用进行展望。  相似文献   

11.
由于全球气候变化,CO_2浓度升高对生态系统产生的影响已成为国际关注的焦点。媒介昆虫传毒引起的植物病毒病是农业生产的一个重要影响因素之一。"CO_2-植物-媒介昆虫-病毒"是一个复杂的系统,围绕CO_2浓度升高对植物的影响、CO_2浓度升高对"植物-媒介昆虫"相互关系以及CO_2浓度升高对媒介昆虫及其传播病毒发生的影响已开展了大量研究。本文主要从CO_2浓度升高对植物、CO_2浓度升高对媒介昆虫和植物以及CO_2浓度升高对媒介昆虫所传病毒发生等方面阐述CO_2浓度升高对媒介昆虫及所传植物病毒发生的影响。研究表明,CO_2浓度升高对于媒介昆虫和病毒本身的直接影响较小,主要影响植物初级和次生代谢过程,主要通过引起植物在基因表达、生理生化、营养水平以及生长等各个层面的变化来影响植物,从而通过级联效应改变"植物-媒介昆虫-病毒"之间的互作关系。  相似文献   

12.
C_3-C_4中间植物   总被引:3,自引:1,他引:2  
C_3—C_4中间植物是在解剖和生理生化方面(特别是光呼吸)介于C_3和C_4植物之间的一种植物类型。这类植物中一部分接近C_3植物,可将光呼吸放出的CO_2再固定,从而降低光呼吸;另一些则以C_3途径为主,而C_4途径同时起作用,从而降低光呼吸。C_3—C_4中间植物为研究C_4植物的进化和光呼吸如何降低提供了实验系统。  相似文献   

13.
理解生态系统对过去、现在和未来CO_2浓度变化的响应,对于在生态进化的时间尺度上认识和预测全球变化的后果至关重要。过去三十多年来CO_2浓度升高相关的科学问题主要集中在对植物生长和生产力的影响,碳氮周转,生态系统渐进式氮限制(PNL)形成,与其他胁迫因子(O_3污染、氮沉降、升温、干旱)之间的交互作用等方面。尽管生态学家在数据累积、基础理论上取得了一定进展,但是仍然存在较大不确定性和大量未知有待解决。该文探究了近30年来CO_2浓度升高对陆地生态系统影响研究的国际研究进展、重点领域及热点,回顾了CO_2浓度升高对植物影响的模拟实验研究发展,重点论述了CO_2浓度升高对粮食产量及品质、碳固定、水分利用效率、生态系统氮利用和土壤微生物响应等国际前沿动态研究中存在的主要问题与不足,在此基础上展望了未来研究中值得关注的前沿研究方向。  相似文献   

14.
我们曾通过解剖结构、CO_2补偿点和酶学特性等方面的研究,确定了谷子的碳同化属于C_4植物的类型。M.D.Hatch和C.R.Slack曾阐明C.植物固定CO_2生成的二羧酸不直接形成其它有机物,而要先经过脱羧,所产生的CO_2进入卡尔文循环再被同化。按其二羧酸脱羧方式的不同,可把C_4植物分成NADP-ME型、NAD-ME型和PCK型  相似文献   

15.
随着工业化的不断发展,特别是化石燃料的使用迅速增加,大气CO_2浓度随之不断上升。CO_2浓度的不断升高会很大程度的影响植物生长发育,而植物体内各种激素之间的相互协调是调节植物生长发育的重要途径。因此,研究大气CO_2浓度升高后植物内源激素含量的变化及内在响应机制将有重大的意义及发展前景。现阶段,对于高CO_2浓度下植物根系形态、生长发育等研究的比较广泛,但与植物内源激素相结合的研究还甚少。回顾了其他学者的研究成果,研究发现大气CO_2浓度升高能够加速净同化率,改善净光合,同时积累生长促进激素,减少生长抑制激素,从而调节同化物的分配,促进植物生长。并综述了植物的内源激素,包括生长素(IAA)、赤霉素(GA_3)、脱落酸(ABA)、细胞分裂素(CK)和乙烯(ET)对CO_2浓度升高的响应,分析了CO_2对于相关激素合成和信号转导途径中基因表达的影响,包括不同植物内源激素含量变化及其内在响应机制的研究进展,并展望本领域中有待深入的研究方向。  相似文献   

16.
气生植物的生物学特性及研究展望   总被引:3,自引:0,他引:3  
郑桂灵  李鹏 《生物学杂志》2009,26(5):56-58,62
气生植物是指不需要土壤,生长所需的水分和营养可以全部来自空气的植物。它既不同于附生植物.也不同于具有气生根的植物。主要包括地衣、苔藓、蕨、凤梨科和兰科植物中的某些附生类群。它们没有根或者根不发达,仅起固定植株的作用。因为气生植物直接从空气中吸收水分和养分,但空气中的水分和养分毕竞是有限的,所以这些植物一般都具有很强的利用水分及养分的能力,很多植物已经成为有效地检测环境变化的“指示生物”和去除环境污染的修复植物。另外,因为这些植物具有忍受恶劣环境条件的生理基础,还可能成为适应空间环境的先锋植物,在空间植物学研究中将具有特殊的意义。  相似文献   

17.
如何快速鉴别C3与C4植物   总被引:1,自引:0,他引:1  
在农业实践和科学研究中经常需要知道某种植物是C_3植物还是C_4植物,例如在干旱少雨的地区种植C_4作物就易获得较高的产量;用甲醇喷洒植物能使植物增产,但这种技术只适用于C_3植物而不适用于C_4植物等。从理论上讲,C_3植物光合作用固定CO_2的最初产物是三碳的3—磷酸甘油酸,C_4植物光合作用固定CO_2的最初产物是四碳的苹果酸或天冬氨酸。我们在研究农田杂草光合碳同化途径时,摸索了一些快速区分C_3植物与C_4植物的经验,介绍如下。 从植物进化方面区分 我们知道,C_3植物较原始,C_4植物较进化,实际上较原始的蕨类植物和裸子植物就没有C_4植物,只有较进化  相似文献   

18.
环境保护和能源供应是人类关心的两大问题。能源消耗释放出的温室气体对环境造成了严重影响。利用CO_2固定途径可将CO_2转化成燃料或化学品。天然固碳生物通常存在生长缓慢、固碳效率低等问题。通过在模式微生物中增强或重构CO_2固定途径,实现CO_2的再循环,可提高燃料或化学品的产量,减少温室气体排放。文中详细介绍了通过代谢工程手段改造CO_2固定途径改善化学品生产以及糖合成,阐述了相关代谢途径及其中的关键酶在CO_2固定中的作用,介绍了电生化合成系统的应用,显示出CO_2固定的巨大潜力,并展望了未来CO_2固定的研究方向。  相似文献   

19.
光合能量代谢对C_3植物光呼吸的调节作用   总被引:1,自引:0,他引:1  
C_3植物光呼吸与光合作用关系受光合能量代谢状况的调节。在外界无CO_2和照光条件下,贮藏性光合产物经某种转化途径能“回迁”光合与光呼吸碳循环并显著地受到光合能量代谢的影响。在无CO_2或低CO_2浓度、高光强条件下,此碳素“回迁”过程对协调光合能量代谢与光合碳素代谢平衡,可能起重要作用。  相似文献   

20.
光呼吸乙醇酸途径的阐明,使人们对光合碳途径的认识前进了一步。从现知的乙醇酸途径来看,它似乎是一个损耗光合固定的碳素和能量的过程。据推算,在正常的大气条件下(此时 RuDP 羧化酶和加氧酶活性比例为4:1),由乙醇酸途径放出的C0_2占光合固定的 CO_2 14%。实测的结果表明,C_3植物光呼吸放CO_2可达净光合所固定的CO_2的14—75%。因此人们曾设想,若用某些  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号