首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capping box, a recurrent hydrogen bonded motif at the N-termini of alpha-helices, caps 2 of the initial 4 backbone amide hydrogen donors of the helix (Harper ET, Rose GD, 1993, Biochemistry 32:7605-7609). In detail, the side chain of the first helical residue forms a hydrogen bond with the backbone of the fourth helical residue and, reciprocally, the side chain of the fourth residue forms a hydrogen bond with the backbone of the first residue. We now enlarge the earlier definition of this motif to include an accompanying hydrophobic interaction between residues that bracket the capping box sequence on either side. The expanded box motif--in which 2 hydrogen bonds and a hydrophobic interaction are localized within 6 consecutive residues--resembles a glycine-based capping motif found at helix C-termini (Aurora R, Srinivasan R, Rose GD, 1994, Science 264:1126-1130).  相似文献   

2.
A polysaccharide, an alpha-D-glucan with an apparent molecular weight of 6.85 x 10(4), called PSa glucan, was isolated from fresh seeds of Sorghum arundinaceum by fractionation on Sephacryl S-300 HR and Sephadex G-25. Chemical and spectroscopic studies indicated that it has a highly branched glucan type structure composed of alpha-(1-->4) linked D-glucopyranose residues with (1-->3), (1-->6) branching points, and a significant amount of alpha-(1-->6) branching to alpha-(1-->3) linked D-glucopyranose residues. The anti-inflammatory activity of the polysaccharide was performed using the capillary permeability assay.  相似文献   

3.
The two helical parameters n and h where n is the number of nucleotide residues per turn and h is the height per nucleotide residue have been evaluated for single stranded helical polynucleotide chains comprising C(3') -endo and C(2') endo class of nucleotides. The helical parameters are found to be especially sensitive to the C(4')-C(3') (sugar pucker) and the C(4')-C(5') torsions. The (n-h) plots display only one important helix forming domain for each class of nucleotides characterized by the sugar pucker and the C(4')-C(5') torsion. A correlation between the (n-h) plots and the known RNA (A,A') and DNA (A,B,C) helical forms has been established. It is found that all forms of helices except the C-DNA possess a favorable combination of P-O torsions. The analysis of the (n-h) plots suggests that C-DNA can have a conformation very similar to B-DNA. Although the (n-h) plots predict the stereochemical possibility of both right-handed and left-handed helices, nucleic acids apparently prefer right-handed conformation because of the energetics associated with the sugar-phosphate backbone and the base.  相似文献   

4.
Solid state (13)C NMR studies of the extracellular glucans from the fungi Acremonium persicinum C38 (QM107a) and Acremonium sp. strain C106 indicated a backbone of (1-->3)-beta-linked glucosyl residues with single (1-->6)-beta-linked glucosyl side branches for both glucans. Analyses of enzymatic digestion products suggested that the average branching frequency for the A. persicinum glucan (66.7% branched) was much higher than that of the Acremonium sp. strain C106 glucan (28.6% branched). The solid state (13)C NMR spectra also indicated that both glucans are amorphous polymers with no crystalline regions, and the individual chains are probably arranged as triple helices.  相似文献   

5.
Vijayakumar M  Qian H  Zhou HX 《Proteins》1999,34(4):497-507
A survey of 322 proteins showed that the short polar (SP) side chains of four residues, Thr, Ser, Asp, and Asn, have a very strong tendency to form hydrogen bonds with neighboring backbone amides. Specifically, 32% of Thr, 29% of Ser, 26% of Asp, and 19% of Asn engage in such hydrogen bonds. When an SP residue caps the N terminal of a helix, the contribution to helix stability by a hydrogen bond with the amide of the N3 or N2 residue is well established. When an SP residue is in the middle of a helix, the side chain is unlikely to form hydrogen bonds with neighboring backbone amides for steric and geometric reasons. In essence the SP side chain competes with the backbone carbonyl for the same hydrogen-bonding partner (i.e., the backbone amide) and thus SP residues tend to break backbone carbonyl-amide hydrogen bonds. The proposition that this is the origin for the low propensities of SP residues in the middle of alpha helices (relative to those of nonpolar residues) was tested. The combined effects of restricting side-chain rotamer conformations (documented by Creamer and Rose, Proc Acad Sci USA, 1992;89:5937-5941; Proteins, 1994;19:85-97) and excluding side- chain to backbone hydrogen bonds by the helix were quantitatively analyzed. These were found to correlate strongly with four experimentally determined scales of helix-forming propensities. The correlation coefficients ranged from 0.72 to 0.87, which are comparable to those found for nonpolar residues (for which only the loss of side-chain conformational entropy needs to be considered).  相似文献   

6.
beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix.  相似文献   

7.
A water-soluble polysaccharide, isolated from the seeds of dates, has been investigated using methylation, periodate and CrO(3) oxidation, NMR spectroscopy, and reaction with Bandeiraea simplicifolia lectin and alpha-D-galactosidase. The polysaccharide consists of a backbone composed of (1-->4)-beta-D-mannopyranosyl residues and carries a single (1-->6)-alpha-linked D-galactopyranosyl residue.  相似文献   

8.
Fibre type X-ray diffraction patterns have been obtained from oriented, semi-crystalline films prepared from the sodium salt of the capsular polysaccharide of Klebsiella serotype K25. This molecule has a tetrasaccharide repeating structure consisting of a disaccharide backbone and a disaccharide side chain. The backbone contains a di-equatorially 1,4 linked β-d-glucose residue followed by a di-equatorially 1,3 linked β-d-galactose residue. The side chain is attached to the axial O(4) position of the galactose residue and consists of a di-equaltorially 1,2 linked β-d-glucoronic acid with a β-d-glucose residue attached terminally. An interesting feature of the backbone linkage geometry of this polysaccharide is its similarity with those of the animal connective tissue polydisaccharides. Analysis of diffraction patterns gives rise to an extended three fold helical conformation with an axially projected advance per chemical repeat of 0.97 nm. Molecular models have been computer generated using least squares techniques to optimize interatomic contacts and simultaneously meet the observed helical parameters. A left handed helix with inter-residue stabilizing hydrogen bonds was found to be most favourable and comparison of this model with other relevant polysaccharide structures is male.  相似文献   

9.
A significant fraction of the amino acids in proteins are alpha helical in conformation. Alpha helices in globular proteins are short, with an average length of about twelve residues, so that residues at the ends of helices make up an important fraction of all helical residues. In the middle of a helix, H-bonds connect the NH and CO groups of each residue to partners four residues along the chain. At the ends of a helix, the H-bond potential of the main chain remains unfulfilled, and helix capping interactions involving bonds from polar side chains to the NH or CO of the backbone have been proposed and detected. In a study of synthetic helical peptides, we have found that the sequence Ser-Glu-Asp-Glu stabilizes the alpha helix in a series of helical peptides with consensus sequences. Following the report by Harper and Rose, which identifies SerXaaXaaGlu as a member of a class of common motifs at the N termini of alpha helices in proteins that they refer to as “capping boxes,” we have reexamined the side chain–main chain interactions in a varient sequence using 1H NMR, and find that the postulated reciprocal side chain-backbone bonding between the first Ser and last Glu side chains and their peptide NH partners can be resolved: Deletion of two residues N terminal to the Ser-Glu-Asp-Glu sequence in these peptides has no effect on the initiation of helical structure, as defined by two-dimensional (2D) NMR experiments on this variant. Thus the capping box sequence Ser-Glu-Asp-Glu inhibits N terminal fraying of the N terminus of alpha helix in these peptides, and shows the side chain–main chain interactions proposed by Harper and Rose. It thus acts as a helix initiating signal. Since normal a helix cannot propagate beyond the N terminus of this structure, the box acts as a termination signal in this direction as well. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
An analysis of the geometry and the orientation of metal ions bound to histidine residues in proteins is presented. Cations are found to lie in the imidazole plane along the lone pair on the nitrogen atom. Out of the two tautomeric forms of the imidazole ring, the NE2-protonated form is normally preferred. However, when bound to a metal ion the ND1-protonated form is predominant and NE2 is the ligand atom. When the metal coordination is through ND1, steric interactions shift the side chain torsional angle, chi 2 from its preferred value of 90 or 270 degrees. The orientation of histidine residues is usually stabilized through hydrogen bonding; ND1-protonated form of a helical residue can form a hydrogen bond with the carbonyl oxygen atom in the preceding turn of the helix. A considerable number of ligands are found in helices and beta-sheets. A helical residue bound to a heme group is usually found near the C-terminus of the helix. Two ligand groups four residues apart in a helix, or two residues apart in a beta-strand are used in many proteins to bind metal ions.  相似文献   

11.
The incorporation of alpha-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib)3-OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven alpha-type hydrogen bonds in the middle and 3(10)-type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH...OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in alpha-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration. The space group is P2(1)2(1)2(1), with a = 9.964 (3) A, b = 20.117 (3) A, c = 39.311 (6) A, Z = 4, and dx = 1.127 g/cm3 for C64H106N13O16.1.33H2O. The final agreement factor R was 0.089 for 3667 data observed greater than 3 sigma(F) with a resolution of 0.9 A.  相似文献   

12.
Energetics of intrachain salt-linkage formation in collagen   总被引:1,自引:0,他引:1  
E P Katz  C W David 《Biopolymers》1990,29(4-5):791-798
The energy of formation of salt linkages between Arg or Lys with Asp or Glu in a polypeptide chain having the collagen fold have been estimated using the fully empirical energy minimization scheme AMBER. The polypeptide was considered both in an isolated and a hydrated triple helical state. The collagen fold associated with a one-bonded triple helical conformation allows intrachain salt linkages having stabilization energies of 60-100 kcal when the reacting residues are separated by no more than two intervening residues. The amino end of one side chain always approaches the carboxyl end of the other side chain, and simultaneously approaches the carbonyl oxygen of the intervening backbone residue. The salt linkage conformation and the backbone conformation of the isolated collagen fold in vacuo are maintained when the molecules are in a hydrated triple helix. These results are compatible with a fold-forming role for salt linkages, especially in proline poor regions, during collagen polypeptide synthesis, and with the persistence of intrachain salt linkages throughout molecular and fibril assembly.  相似文献   

13.
A molecular dynamics simulation of a simple model membrane system composed of a single amphiphilic helical peptide (ace-K2GL16K2A-amide) in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer was performed for a total of 1060 ps. The secondary structure of the peptide and its stability were described in terms of average dihedral angles, phi and psi, and the C alpha torsion angles formed by backbone atoms; by the average translation per residue along the helix axis; and by the intramolecular peptide hydrogen bonds. The results indicated that residues 6 through 15 remain in a stable right-handed alpha-helical conformation, whereas both termini exhibit substantial fluctuations. A change in the backbone dihedral angles for residues 16 and 17 is accompanied by the loss of two intramolecular hydrogen bonds, leading to a local but long-lived disruption of the helix. The dynamics of the peptide was characterized in terms of local and global helix motions. The local motions of the N-H bond angles were described in terms of the autocorrelation functions of P2[cos thetaNH(t, t + tau)] and reflected the different degrees of local peptide order as well as a variation in time scale for local motions. The chi1 and chi2 dihedral angles of the leucine side chains underwent frequent transitions between potential minima. No connection between the side-chain positions and their mobility was observed, however. In contrast, the lysine side chains displayed little mobility during the simulation. The global peptide motions were characterized by the tilting and bending motions of the helix. Although the peptide was initially aligned parallel to the bilayer normal, during the simulation it was observed to tilt away from the normal, reaching an angle of approximately 25 degrees by the end of the simulation. In addition, a slight bend of the helix was detected. Finally, the solvation of the peptide backbone and side-chain atoms was also investigated.  相似文献   

14.
We investigated the possible role of residues at the Ccap position in an alpha-helix on protein stability. A set of 431 protein alpha-helices containing a C'-Gly from the Protein Data Bank (PDB) was analyzed, and the normalized frequencies for finding particular residues at the Ccap position, the average fraction of buried surface area, and the hydrogen bonding patterns of the Ccap residue side-chain were calculated. We found that on average the Ccap position is 70% buried and noted a significant correlation (R=0.8) between the relative burial of this residue and its hydrophobicity as defined by the Gibbs energy of transfer from octanol or cyclohexane to water. Ccap residues with polar side-chains are commonly involved in hydrogen bonding. The hydrogen bonding pattern is such that, the longer side-chains of Glu, Gln, Arg, Lys, His form hydrogen bonds with residues distal (>+/-4) in sequence, while the shorter side-chains of Asp, Asn, Ser, Thr exhibit hydrogen bonds with residues close in sequence (<+/-4), mainly involving backbone atoms. Experimentally we determined the thermodynamic propensities of residues at the Ccap position using the protein ubiquitin as a model system. We observed a large variation in the stability of the ubiquitin variants depending on the nature of the Ccap residue. Furthermore, the measured changes in stability of the ubiquitin variants correlate with the hydrophobicity of the Ccap residue. The experimental results, together with the statistical analysis of protein structures from the PDB, indicate that the key hydrophobic capping interactions between a helical residue (C3 or C4) and a residue outside the helix (C", C3' or C4') are frequently enhanced by the hydrophobic interactions with Ccap residues.  相似文献   

15.
Invariant features of the primary structure of 67 globins are analysed. These features may be responsible for the formation of the secondary structure of these proteins at the first stage of self-organization (in the unfolded chain). It is shown that in primary structures of globins there are 11 sites or regions of one to four residues in which at least one of the residues Asn, Asp, His, Pro, Ser or Thr is located in every globin (haem-linking His residues are excluded from these sites). An unambiguous correlation exists between the position of these regions and the secondary structure of globins: all these regions (except one) are located near the ends of helices in globins whose three-dimensional structure is known and the ends of all helices (except for the helix F) are coded by such regions. A decrease in the set of residues listed above leads to a sharp drop in the number of regions invariantly occupied by the residues, while an addition of residues such as Tyr and Gly to this set does not eventually increase the number of invariant regions. Five residues (Asn, Asp, His, Ser and Thr) of the six that code the ends of helical regions have polar side groups with a small number of degrees of freedom capable of forming hydrogen bonds with atoms of the backbone with a relatively small loss of entropy. One residue (Pro) has no NH-group and, therefore, has less chance of participating in the formation of hydrogen bonds between atoms of the backbone. This corroborates the hypothesis that competition between hydrogen bonds of short polar side groups and hydrogen bonds in the backbone is essential for the formation of the secondary structure in unfolded protein chains. Amino acid replacements in hydrophobic cores of the 67 globins are considered in the Appendix.  相似文献   

16.
Several β-D-glucans, appertaining to the same molecular species but having different degrees of branching, were isolated from water and alkali extracts of the fruiting body of Ganoderma lucidum (Reishi). The purified glucans that were mostly water-insoluble had a backbone of (1 →3)-linked D-glucose residues, attached mainly with single D-glucosyl units at 0-6 and also with a few short (l→4)-linked glucosyl units at 0-2 positions. However, their degrees of branching appeared to differ in the range of d.b. 1/3 ~ 1/23, depending on the extracted glucan fractions. In addition to the ^-glucans, the fruiting body contained water-soluble heteropolysaccharides, comprising D-glucose, D-galactose, D-mannose, L-(or D)-arabinose, D-xylose, and L-fucose.

A branched (1 →3)-β-D-glucan was also isolated from the culture filtrate of G. lucidum grown in a glucose-yeast extract medium. The extracellular β-D-glucan was less soluble in water after purification, but soluble in dilute alkali. This glucan has essentially the same structure as that of hot-water extracted polysaccharide from the fruiting body. The repeating unit of the glucan contains a backbone chain of (1 →3)-linked D-glucose residues, five out of sixteen D-glucose residues being substituted at 0-6 positions with single D-glucosyl units and one D-glucose residue at 0-2 positions probably with a cellobiose unit.

The hot-water extractable fruiting body glucan and the extracellular glucan of the culture of growing mycelium showed relatively high growth-inhibition activities against Sarcoma 180 solid tumor in mice, when administered by. successive intraperitoneal injections. When the moderately branched glucans were modified to D-glucan-polyols by periodate oxidation and borohydride reduction, they exhibited higher antitumor activities, confirming the previous conclusion that the attachment of polyol groups to the (1 →3)-lmked backbone significantly enhances its host-mediated antitumor effect.  相似文献   

17.
Chen Z  Xu P  Barbier JR  Willick G  Ni F 《Biochemistry》2000,39(42):12766-12777
The solution conformations of a selectively osteogenic 1-31 fragment of the human parathyroid hormone (hPTH), hPTH(1-31)NH(2), have been characterized by use of very high field NMR spectroscopy at 800 MHz. The combination of the CalphaH proton and (13)Calpha chemical shifts, (3)J(NH)(alpha) coupling constants, NH proton temperature coefficients, and backbone NOEs reveals that the hPTH(1-31)NH(2) peptide has well-formed helical structures localized in two distinct segments of the polypeptide backbone. There are also many characteristic NOEs defining specific side-chain/backbone and side-chain/side-chain contacts within both helical structures. The solution structure of hPTH(1-31)NH(2) contains a short N-terminal helical segment for residues 3-11, including the helix capping residues 3 and 11 and a long C-terminal helix for residues 16-30. The two helical structures are reinforced by well-defined capping motifs and side-chain packing interactions within and at both ends of these helices. On one face of the C-terminal helix, there are side-chain pairs of Glu22-Arg25, Glu22-Lys26, and Arg25-Gln29 that can form ion-pair and/or hydrogen bonding interactions. On the opposite face of this helix, there are characteristic hydrophobic interactions involving the aromatic side chain of Trp23 packing against the aliphatic side chains of Leu15, Leu24, Lys27, and Leu28. There is also a linear array of hydrophobic residues from Val2, to Leu7, to Leu11 and continuing on to residues His14 and Leu15 in the hinge region and to Trp23 in the C-terminal helix. Capping and hydrophobic interactions at the end of the N-terminal and at the beginning of the C-terminal helix appear to consolidate the helical structures into a V-shaped overall conformation for at least the folded population of the hPTH(1-31)NH(2) peptide. Stabilization of well-folded conformations in this linear 1-31 peptide fragment and possibly other analogues of human PTH may have a significant impact on the biological activities of the PTH peptides in general and specifically for the osteogenic/anabolic activities of bone-building PTH analogues.  相似文献   

18.
Silva RA  Nguyen JY  Decatur SM 《Biochemistry》2002,41(51):15296-15303
The mechanism of helix stabilization or destabilization by different amino acids has been the subject of several experimental and theoretical studies; these studies suggest that large or bulky side chains may modulate helix stability by altering the hydration of the helix backbone. In this paper, we report a spectroscopic study to determine the effect of alanine to leucine substitutions on the conformation and solvation of specific segments of a model helical peptide. A 25-residue, alanine-rich, helical peptide [Ac-(AAAAK)(4)-AAAAY-NH(2) (AKA)] and its two leucine variants [Ac-LLLLK-(AAAAK)(3)-AAAAY-NH(2) (LKA) and Ac-(AAAAK)(4)-LLLLY-NH(2) (AKL)] were characterized by infrared (IR) and electronic circular dichroism (ECD) spectroscopies. Introduction of (13)C isotopes into specific, consecutive, backbone carbonyls for certain blocks of each of the peptides mentioned above allows the IR spectra to be interpreted in terms of the conformation and solvation of specific residues within the helix. These isotope-edited IR spectra of the leucine peptides do not show evidence of a decrease in the degree of backbone solvation compared to the alanines, but suggest that the peptide may adopt a distorted conformation to accommodate the larger leucine side chains at the N-terminus. These experiments demonstrate the power of isotope-edited IR in dissecting subtle changes in helix conformation at the residue level.  相似文献   

19.
In a previous article [Carbohydr. Res.2001, 331, 163-171] two different structures for the possible modular repeating unit of the extracellular beta-glucan, epiglucan produced by the fungus Epicoccum nigrum strain F19 were proposed. Clarifying which was the more likely one was considered essential before attempts were made to understand how epiglucan was assembled by this fungus. Data from Smith degradation analyses of epiglucan were consistent with the repeating unit of structure I, where single glucosyl residues are attached by (1-->6)-beta-linkages to two out of every three glucosyl residues in the (1-->3)-beta-linked glucan backbone. Repeated Smith degradations of 14C-glucose labelled epiglucan showed that chain elongation occurred from its non-reducing end. Side chain insertion into the growing glucan was followed by analysis of real time incorporation of 13C-glucose into epiglucan by 13C NMR, and 14C-glucose by enzymic digestion of the synthesised 14C-epiglucan. All data obtained were consistent with the view that single (1-->6)-beta-linked glucosyl side residues are inserted simultaneously as the glucan backbone elongates.  相似文献   

20.
Karle IL 《Biopolymers》2001,60(5):351-365
The helix forming properties of the achiral alpha-amino isobutyric residue (Aib) have been demonstrated by numerous crystal structure analyses of designed and naturally occurring peptides containing one or more Aib residues in the sequence. Experimental and computational results concerning the type of helix obtained, whether the 3(10)-helix with 4 --> 1 type hydrogen bonds or the alpha-helix with 5 --> 1 hydrogen bonds or mixtures of the two, have been published. This paper deals with residues that, if inserted into a sequence, could perturb the helix-forming propensity afforded by the presence of Aib residues. Examples of structures will be presented in which Pro, Hyp, Gly-Gly, d-Ala-Gly, and Lac have been centrally placed in the sequence. In addition to the formation of helices, detailed experimentally obtained conformation information is presented for the role of the Aib residue in reversing the sense of the helix (the Schellman motif) with the consequent formation of the 6 --> 1 type hydrogen bond or a solvated 6 --> 1 hydrogen bond. Data are presented for 13 molecules with helix reversals at the C-terminus or near the center of the sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号