首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content and composition of pigments were examined in the third leaf of Zea mays L. plants grown under controlled environment at near-optimal temperature (24°C) or sub-optimal temperature (14°C) at a light intensity of either 200 or 600 μmol m?2 s?1. Compared to leaves grown at 24°C, leaves grown at 14°C showed a large reduction in the chlorophyll (Chl) content, a marked decrease in the Chl a/b ratio, and a large increase in the ratio of total carotenoids/Chl a+b. Leaves grown at 14°C showed a much lower content of β-carotene than leaves grown at 24°C, while the content of the carotenoids of the xanthophyll cycle (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was markedly higher in the former leaves as compared to the latter leaves; neoxanthin and lutein were affected by the growth temperature to a much lesser extent. The xanthophylls/β-carotene ratio was about three times higher in leaves grown at 14°C as compared to leaves grown at 24°C. On a chlorophyll basis, the two types of leaves hardly differed in their level of β-carotene, while the levels of the xanthophylls (including lutein and neoxanthin) were higher in 14°C-grown leaves as compared to 24°C-grown leaves. In leaves grown at 14°C, 40 and 56% of the V+A+Z pool was in the form of zeaxanthin at low light intensity and high light intensity, respectively. Only trace amounts of zeaxanthin, if any, were present in leaves grown at 24°C. The changes in the pigment composition induced by growth at sub-optimal temperature were more pronounced at a light intensity of 600 as compared to 200 μmol m?2 s?1. In the given range, the light intensity slightly affected the composition of pigments in leaves grown at 24°C. The physiological significance of the modifications to the pigment composition induced by growth at sub-optimal temperature is discussed.  相似文献   

2.
The changes in photosynthetic activity and composition of pigments induced by changes in temperature were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of maize (Zea mays L.). The plants were grown under a controlled environment at a photon flux density of 550 mol m-2 s-1, a 12 h photoperiod and at a suboptimal temperature of 14/12 C (day/night) until the full expansion of the third leaf. After this treatment, the chilling-tolerant genotypes, when compared with the sensitive ones, displayed a higher photosynthetic activity, a higher content of chlorophyll (Chl) a+b, a higher Chl a/b ratio, a larger total carotenoid pool size as well as a different carotenoid composition. When temperature was subsequently increased to 24/22 C for 3 d the composition of the pigments changed, but the chilling-sensitive genotypes, while adjusting their lower Chl a/b ratio and their different carotenoid composition, were unable to adjust their lower content of chlorophyll, their smaller total carotenoid pool size or their lower photosynthetic performance. Moreover, while the chilling-tolerant genotypes converted the most part of zeaxanthin to violaxanthin in the xanthophyll cycle, the chilling-sensitive genotypes retained high amounts of zeaxanthin. The changes in pigment composition that occurred over the 3 d at 24/22 °C were largely conserved when the plants were returned to 14/12 °C, but photosynthetic activity decreased and zeaxanthin accumulated again. The results suggest that the capability of the chilling-tolerant genotypes, when compared with the sensitive ones, to retain high amounts of pigments and to form a competent photosynthetic apparatus at low temperature is the basis for their more vigorous growth in cool climates.  相似文献   

3.
The effects of changes in growth temperature on photosynthesis and carotenoid composition were examined in Zea mays L. leaves of different age and different developmental history. The plants were first grown at sub-optimal temperature (14°C) until the full development of the third leaf. At that time, the mature third leaf and the immature fourth leaf had a low chlorophyll (Chl) content, a low Chl a/b ratio, a high carotenoid/Chl a+b ratio, a high xanthophyll/β-carotene ratio, and about 80% of the xanthophyll cycle pool (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was in the form of zeaxanthin and antheraxanthin. When the temperature was increased from 14°C to 24°C for three days, increased Chl synthesis, accompanied by an increase in the Chl a/b ratio, took place. The ratios of lutein, neoxanthin, and V+A+Z to Chl a+b decreased markedly, whereas no significant changes appeared in the β-carotene/Chl a+b ratio. Furthermore, there was a sharp decrease in the xanthophyll/β-carotene ratio and most of zeaxanthin was converted to violaxanthin in the xanthophyll cycle. The third leaf and the tip segment of the fourth leaf, both expanded at 14°C, showed little difference in their pigment contents. However, the rate of CO2 assimilation of the tip segment of the fourth leaf was nearly twice that of the third leaf on the third day at 24°C, while the photosynthetic activity was similar in both leaves before the transfer to 24°C. During the warm period at 24°C, new leaf tissue (basal segment of the fourth leaf and part of a fifth leaf) was formed. On the third day at 24°C, the pigment content of 24°C-grown leaf tissue did not differ much from that of 14°C-grown leaf tissue with the exception that the total carotenoid content was lower in the former as compared to the latter, mainly because of a lower V+A+Z content. The rate of CO2 assimilation of 24°C-grown leaf tissue was comparable to that of the tip segment of the fourth leaf. Regardless of which leaf tissue is considered, reducing the temperature from 24°C to 14°C for 5 days slightly affected the pigment content, but violaxanthin was largely converted to zeaxanthin and antheraxanthin in the xanthophyll cycle. The results indicate that compared to old leaf tissue of mature leaves, physiologically younger leaf tissue of immature leaves is much more able to recover from depressions in the photosynthetic activity induced by growth at sub-optimal temperature when the plants experience optimal growth temperatures, but that factors other than the pigment content must determine this capability.  相似文献   

4.
The composition and amount of pigments were studied in temperature-dependent chlorophyll-deficient seedlings of wild type (control) and several mutant lines of Festuca pratensis Huds. at room (25°C) and high (35°C) temperatures. In seedlings of all mutant lines grown at 25°C, chlorophyll b content was lower and the concentration of carotenoids was higher than in control seedlings. At 35°C, the concentration of all pigments decreased in a row from dark-green to xantha phenotypes, and this trend was retained when the temperature was lowered to 25°C. The phenotype xantha completely lacked violaxanthin and neoxanthin. The observed effects are related to the protective dissipative function of the xanthophyll cycle.  相似文献   

5.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   

6.
The contents of pigments and chlorophyll-protein complexes, fluorescence characteristics and electron transport rate were compared for wheat seedlings grown under different light intensities. Leaves of wheat seedlings grown under low-light intensity (2 klx) had lower chlorophyll and carotenoid contents on leaf area or fresh weight basis, a lower ratio of chlorophyll a/b, lower CPIa and CPI contents in photosynthetic membranes than those of wheat seedlings grown under high-light intensity (20 klx). However, the LHCP content in photosynthetic membranes was higher in the former. The kinetic studies of fluorescence induction showed that wheat seedlings grown under low-light intensity possessed a bigger photosynthetic unit, lower PSⅡ activity and lower efficiency of primary energy conversion than those grown under high-light intensity. Moreover. lower electron transport rate was found in the chloroplasts of the former.  相似文献   

7.
The lipophilic photosynthetic pigments in Limnothrix redekei, Planktothrix agardhii (cyanobacteria), Stephanodiscus minutulus, Synedra acus (diatoms), Scenedesmus acuminatus, and Scenedesmus armatus (chlorophycean) all isolated from an eutrophic lake were quantitatively determined by HPLC. The algae were grown semi-continuously under nutrient sufficient conditions at 20°C at a 12/12 h light/dark cycle with constant irradiance or with simulated natural light fluctuations as well as at a 6/18 h light/dark cycle with constant irradiance, all at the same daily light exposure. The zeaxanthin and the myxoxanthophyll contents of cyanobacteria were not influenced by fluctuating light, a short photoperiod or a different sampling time. The chlorophyll b/a ratio, the lutein/chlorophyll a ratio, and the neoxanthin content of chlorophycean as well as the chlorophyll c/a and the fucoxanthin/chlorophyll a ratio of diatoms were only slightly influenced by these factors. Therefore in some cases marker pigment contents and in other cases marker pigment/chlorophyll a ratios may be more useful for quantifying the relative importance of different taxonomic groups in natural phytoplankton. Simulated natural light fluctuations or the length of the photoperiod only slightly influenced the pigment content or the marker pigment/chlorophyll a ratio.  相似文献   

8.
Plastid development in albescent maize   总被引:2,自引:1,他引:1       下载免费PDF全文
Troxler RF  Lester R  Craft FO  Albright JT 《Plant physiology》1969,44(11):1609-1611,1613,1615-1618
Plastid development in albescent (al/al) and wild-type (+/al) strains of Zea mays has been studied in the electron microscope. Etiolated seedlings of the mutant are severely deficient in colored carotenoid pigments and accumulate carotenoid precursors tentatively identified as phytoene and phytofluene. The fine structure of proplastids in etiolated wild-type and mutant leaves is similar with 1 notable exception. Osmiophilic bodies found in the wild-type were lacking in all sections of albescent proplastids examined suggesting that these structures may be storage centers for carotenoid pigments. Plastid pigments are destroyed, chlorophyll synthesizing potential is lost, and the ultrastructure of plastids is irreversibly altered when mutant seedlings are placed directly in high intensity light. However, synthesis of plastid pigments and development of the photosynthetic apparatus as seen in the electron microscope is normal, and indistinguishable from that in the wild-type, in seedlings of the albescent mutant preilluminated with low intensity light prior to high intensity illumination. During treatment in low intensity light carotenogenesis is initiated in the mutant and proceeds normally thereafter.  相似文献   

9.
In our previous work we found considerable accumulation of early light-inducible proteins (ELIPs) in barley during adaptation to combined high light and cold stress, an accumulation which occurred preferentially in the apical part of the leaves (M.-H. Montané et al., 1997, Planta 202: 293–302). Here we studied, under the same conditions, the effect of adaptation on the composition of thylakoid membrane proteins and pigments, particularly xanthophylls and chlorophyll, and their distribution within the barley leaf. It was observed that high light fluxes appeared to favour the trimerization of the light-harvesting complex of photosystem II (LHC II) whereas cold appeared to favour the monomers of LHC II. High light, cold or the combination of both factors had only a small effect on the protein composition of the thylakoid membranes except for the proteins of LHC II which were found to decrease under high light to a greater extent at 25 °C than at 5 °C. The total xanthophyll-cycle carotenoid content increased linearly with cellular development, the highest amount being observed in the apical part of the leaf. Cold and high light acted synergistically to induce less than a doubling in the amount of total xanthophylls, while chlorophylls a and b remained nearly constant. The fraction consisting of antheraxanthin plus zeaxanthin was up to 4- to 5-fold higher at 5 °C than at 25 °C. As determined previously (Montané et al. 1997), the same conditions caused a 15-fold increase in the accumulation of ELIPs. Consequently, neither the distribution of total xanthophylls nor that of antheraxanthin plus zeaxanthin along the leaf followed the same pattern as ELIP. Thus, the accumulation of xanthophylls cannot be stoichiometrically correlated with that of ELIPs. Using electrophoresis in the presence of decylmaltoside, we could demonstrate for the first time that ELIPs of 13.5 kDa are contained in high-molecular-mass complexes of >100 kDa, which are located in the unstacked stroma lamellar region of the thylakoid membranes. Received: 6 April 1998 / Accepted: 26 January 1999  相似文献   

10.
In this study, the effects of cadmium chloride (CdCl2) on plant growth, histology of roots, photosynthetic pigments content, δ-aminolevulinic acid dehydratase (ALA-D; E.C. 4.2.1.24) and acid phosphatase activities (AP; E.C. 3.1.3.2), soluble phosphorus (Pi) measurement and mineral nutrients content in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were grown in vitro in an agar-solidified substrate containing four CdCl2 treatments (0, 100, 400, and 1000 μM) for ten days. Cd was readily absorbed by seedlings and its content was greater in the roots than in the shoot. Cd reduced shoot and root length, and fresh and dry biomass of seedlings. Inhibition of root cell elongation in Cd-treated seedlings was observed by the increase of the mean radial size of cells belonging to three zones of the root tip. The highest level of Cd reduced in a similar manner chlorophyll a, chlorophyll b and total chlorophyll contents. Increasing concentrations of Cd resulted in a linear decrease in carotenoids levels of cotyledons. Interestingly, the ALA-D activity in cotyledons was inhibited only at the highest level of Cd. Root and shoot AP activities were, respectively, activated and inhibited at all CdCl2 concentrations. Root Pi concentration was increased in all Cd treatments and it was not altered in the shoot tissues. Moreover, in general, the nutrient contents were increased in the root and decreased in the shoot. Therefore, we suggest that Cd affects negatively growth, photosynthetic pigments, ALA-D and AP activities and partition of mineral nutrients in cucumber seedlings.  相似文献   

11.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

12.
Cui  Dandan  Mo  Yuncai  Zeng  Lingjie  Feng  Kai  Feng  Xiaoyun  Huang  Jialing  He  Mengling  Zhang  Xiaoyuan  Teng  Xifeng 《Journal of Plant Growth Regulation》2020,39(1):358-369

The response of Dendrobium officinale Kimura et Migo (D. officinale) to continuous UV-B irradiation at different carbon to nitrogen ratios (C/N ratios) was investigated. Seedlings grown for 60 days were incubated under aseptic conditions with UV-B irradiation (15.6 µW cm−2) at different C/N ratios: control group (CK; C/N 30 without UV-B), UV-B + CK (C/N 30 with UV-B irradiation, similarly hereafter), UV-B + C/N 120, UV-B + C/N 60, UV-B + C/N 15, UV-B + C/N 10, UV-B + C/N 7.5. Growth parameters (the defoliation rate and the sprout number), photosynthetic pigments (carotenoids, chlorophyll a and chlorophyll b), total polysaccharides, total alkaloids, and activities of antioxidant enzymes were determined following 4, 8, 12, and 16 days of continuous UV-B exposure. Results indicated that UV-B irradiation increased the defoliation rate and the content of carotenoids, total polysaccharides and total alkaloids, as well as the activities of antioxidant enzymes. Conversely, UV-B irradiation reduced the sprout number and chlorophyll content in D. officinale. Compared with UV-B + CK, lower C/N ratio treatments (UV-B + C/N 15, UV-B + C/N 10 and UV-B + C/N 7.5) enhanced the defoliation rate and sprout number, but decreased antioxidant enzyme activities and total polysaccharide content during the whole period, and reduced total alkaloid content after 4 days of UV-B exposure. Following initial UV-B irradiation, lower C/N ratios increased the contents of carotenoid and chlorophyll b, while after 8 days, a reversal in carotenoid content was observed, and after 12 days, a reversal in chlorophyll b content was observed. Optimizing the C/N ratio (C/N 60) resulted in lower defoliation rate, higher photosynthetic pigments and total polysaccharides, and increased activities of antioxidant enzymes, whereas no significant change in sprout number and total alkaloid content was recorded under long-term UV-B irradiation. Furthermore, the UV-B + C/N 120 treatment negatively affected D. officinale in terms of an increased defoliation rate and reduced sprout number, photosynthetic pigments, and total alkaloids. Therefore, results suggested that an appropriate C/N ratio (C/N 60) could ameliorate the adverse effects of continuous UV-B irradiation on D. officinale.

  相似文献   

13.
14.
The protochlorophyllide ester isolated from dark grown barley leaves was shown to contain geranylgeraniol as esterifying alcohol. No phytylester was found. The qualitative analyses were performed with combined gas chromatography-mass spec-trometry. Chromatographic separation and spectrofluorometric determination of the protochlorophyll and chlorophyll pigments before and after irradiation of the dark grown leaves with light flashes at 2°C showed that part of the protochlorophyllide ester was photoconverted to chlorophyll a.  相似文献   

15.
The effect of horizontal clinorotation on the dynamics of the accumulation of the main photosynthetic pigments in the greening of 6-day-old etiolated barley seedlings has been studied. The content of protochlorophillide, the direct precursor of chlorophyll a, in clinorotated seedlings in the dark was 9–20% lower than in the control group. After exposure of barley seedlings to light for 12 h under clinorotation, chlorophyll accumulation lagged behind the control by 45% and reached the control value after 48–72 h. The total content of carotenoids increased many fold during greening; at the first stage the carotenoid level in clinorotated seedlings was less than in the control. The synthesis rates of δ-aminolevulinic acid and δ-aminolevulinate dehydratase activity in clinorotated seedlings were slower than in the control after 24 h of greening and after 72 h of greening reaching the control values. The activity of Mg-protoporphyrin IX chelatase catalyzing the incorporation of Mg ions in the structure of chlorophyll a, did not change when exposed to clinorotation. The results we obtained show inhibition of the initial stages of chlorophyll biosynthesis in the conditions of simulated microgravity. The light, to a certain extent, decreases the negative effect of microgravity on the formation of the photosynthetic apparatus in plants.  相似文献   

16.
The effects of light intensity on the content and composition of leaf pigments, especially of carotenoids, were studied with mature current-year leaves of Taxodiaceous saplings grown under different grades of shade in summer. Both chlorophyll and total carotenoid contents increased with decreasing light intensity, maintaining approximately linear relations between each other, over a range of relative solar radiation of 100% to 7% of full daylight. The regression of total chlorophyll content on mean solar radiation could be well approximated by Shinozaki-Kira's reciprocal equation. The ratio of chlorophyll a to chlorophyll b was smaller in the shade than in the sun. The percentage of α-carotene and violaxanthin in the total carotenoid content tended to increase with increasing degree of shade, while those of β-carotene and lutein were reduced. The eco-physiological meanings of the pigments were considered based on this evidence. The order of shade tolerance among the four species tested is also discussed taking the responses of leaf weight and chlorophyll content to incident light intensity into consideration.  相似文献   

17.
The response and adaption mechanisms of seedlings under long-term warming have remained largely unknown. In this study, we investigated the effects of warming for 6 years on growth, and needle carbon, nitrogen, chlorophyll, and carbohydrate levels in a coniferous tree species, Abies faxoniana. Seedlings were grown in even-aged monospecific stands under ambient and warming (ambient +2.2°C) temperature in climate control chambers. Warming caused statistically significant increases in the specific leaf area, leaf area ratio, root biomass, leaf biomass, branch biomass, stem biomass, and total mass of the seedlings, and reduced the root/shoot ratio. Warming also increased total chlorophyll concentrations, specific chlorophyll pigments, and Chlorophyll a/b ratios in both studied needle age classes. In addition, C/N ratios of current-year and 1-year-old needles increased by warming. In contrast, warming decreased the levels of N, sugar, cellulose, and starch in needles, while warming had no effect on the height, stem diameter, needle mass ratio, root mass ratio, and root/needle ratio. We conclude that warming increases branch growth and changes needle chemistry, which enhances the light capture potential of seedlings.  相似文献   

18.
In higher‐latitude trees, temperature and photoperiod control the beginning and end of the photosynthetically active season. Elevated temperature (ET) has advanced spring warming and delayed autumn cooling while photoperiod remains unchanged. We assessed the effects of warming on the length of the photosynthetically active season of three provenances of Pinus strobus L. seedlings from different latitudes, and evaluated the accuracy of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI) for tracking the predicted variation in spring and autumn phenology of photosynthesis among provenances. Seedlings from northern, local and southern P. strobus provenances were planted in a temperature‐free‐air‐controlled enhancement (T‐FACE) experiment and exposed to ET (+1.5/3°C; day/night). Over 18 months, we assessed photosynthetic phenology by measuring chlorophyll fluorescence, gas exchange, leaf spectral reflectance and pigment content. During autumn, all seedlings regardless of provenance followed the same sequence of phenological events with the initial downregulation of photosynthesis, followed by the modulation of non‐photochemical quenching and associated adjustments of zeaxanthin pool sizes. However, the timing of autumn downregulation differed between provenances, with delayed onset in the southern provenance (SP) and earlier onset in the northern relative to the local provenance, indicating that photoperiod at the provenance origin is a dominant factor controlling autumn phenology. Experimental warming further delayed the downregulation of photosynthesis during autumn in the SP. A provenance effect during spring was also observed but was generally not significant. The vegetation indices PRI and CCI were both effective at tracking the seasonal variations of energy partitioning in needles and the differences of carotenoid pigments indicative of the stress status of needles. These results demonstrate that PRI and CCI can be useful tools for monitoring conifer phenology and for the remote monitoring of the length of the photosynthetically active season of conifers in a changing climate.  相似文献   

19.
Coffea arabica L. is considered to be sensitive to low temperatures throughout its life cycle. In some Brazilian regions, seedling production occurs under shade conditions and during the winter, with average temperatures of around 10 °C. The formation and functioning of the photosynthetic apparatus are strongly controlled by temperature. This study aimed to assess the changes that occurred in pigment contents, lipid peroxidation and variables of chlorophyll a fluorescence during the greening process of coffee seedlings submitted to chilling. Results indicate that saturation of the photosynthetic activity of coffee seedlings occurred before saturation of the accumulation of chloroplastid pigments. Pigment accumulation during the greening process is far beyond the metabolic needs for the maintenance of photosynthetic activity, more specifically of photosystem II. Coffee seedlings attained a quantum yield equivalent to that of the control with approximately half the chlorophyll a and b contents and around 40% of the carotenoid. Low temperature decreases the metabolism of seedlings, consequently reducing free radical production and lipid peroxidation. The chilling temperature (10 °C) used inhibited the accumulation of chloroplast pigments, in turn altering the capacity of the photosynthetic tissue of etiolated coffee seedlings to capture and transfer photon energy to the photosystem II reaction centre. These alterations were better demonstrated by O-J-I-P chlorophyll a fluorescence transients, rather than Fv/Fm and Fv/F0 ratios.  相似文献   

20.
Several mutant strains of Scenedesmus obliquus (Chlorophyta) have been isolated which, when cultured heterotrophically, are pale green or yellow, in contrast to the dark green of the wild type. On the basis of their carotenoid compositions, four groups of pale-green strains have been delineated. These accumulate, respectively, no carotenoid, phytoene, mainly -carotene and mainly -carotene together with some neurosporene and lycopene. All these strains synthesized no chlorophyll b and only small amounts of chlorophyll a. A further group of yellow strains produced the normal Scenedesmus obliquus range of cyclic carotenes and xanthophylls, but no chlorophyll. Most of the pale-green strains were killed by exposure to light, but two strains, PG1 and 1E, which accumulated predominantly -carotene when grown in the dark, survived exposure to the light and developed photosynthetically active chloroplasts containing the normal pigments.The possible biosynthetic implications of the carotenoid composition of these mutant strains, and the relationship between the carotenoid composition and protection of the cells from photooxidative destruction are discussed.Non-Standard Abbreviations TLC thin-layer chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号