首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 20S proteasome from the extreme thermophile Methanococcus jannaschii (Mj) was purified and sequenced to facilitate production of the recombinant proteasome in E. coli. The recombinant proteasome remained in solution at a purity level of 80-85% (according to SDS PAGE) following incubation of cell lysates at 70 degrees C. Temperature-activity profiles indicated that the temperature optima of the wild-type and recombinant enzymes differed substantially, with optimal activities occurring at 119 degrees C and 95 degrees C, respectively. To ameliorate this discrepancy, two recombinant enzyme preparations were produced, each of which included denaturation of the proteasome by 4 M urea followed by high-temperature (85 degrees C) dialysis. The wild-type temperature optimum was restored, but only if proteasome subunits were denatured and refolded prior to assembly (a preparation designated as alpha & beta). In contrast, when proteasome assembly preceded denaturation (designated alpha + beta) the optimum temperature was raised to a lesser degree. Moreover, the alpha & beta and alpha + beta preparations had apparent thermal half-lives at 114 degrees C of 54.2 and 26.2 min, respectively, and the thermostability of the less stable enzyme was more sensitive to a reduction in pH. Attainment of wild-type activity and stability thus required the proper folding of both the alpha- and beta-subunits prior to proteasome assembly. Consistent with this behavior, dual-scanning calorimetry (DSC) measurements revealed differences in the reassembly efficiency of the two proteasome preparations. The ability to produce structural conformers with dramatically different thermal optima and thermostabilities may facilitate the determination of molecular forces and structural motifs responsible for enzyme thermostablity and high-temperature activity.  相似文献   

2.
3.
4.
Purification and characterization of RNase P from Clostridium sporogenes   总被引:1,自引:0,他引:1  
RNase P is a multi-subunit enzyme responsible for the accurate processing of the 5' terminus of all tRNAs. The RNA subunit from Clostridium sporogenes has been partially purified and characterized. The RNA is approximately 400 nucleotides long and makes a precise endonucleolytic cleavage at the mature 5' terminus of tRNA. The RNA requires moderate concentrations of Mg2+ (20 mM) and relatively high concentrations of NH4Cl (800 mM) for optimal activity. Mn2+ effectively substitutes for Mg2+ at 2 mM. Zn2+, Ni2+, Ca2+, and Co2+ are ineffective at stimulating activity. Monovalent ions are, in general, more effective the greater the ionic radius (NH+4 greater than Cs greater than Rb greater than K greater than Na). In contrast to the activity of Bacillus subtilis, C. sporogenes RNase P RNA is significant more active in (NH4)2SO4 than in NH4Cl.  相似文献   

5.
The 20S proteasome, the catalytic core of the 26S proteasome, has previously been isolated, purified and partially characterised from ostrich skeletal muscle (Thomas, A.R., Oosthuizen, V., Naude, R.J., Muramoto, K. 2002. Biol. Chem. 383, 1267-1270). Due to the apparent latency of the 20S proteasome purified from various sources, this study focuses on further characterising the ostrich enzyme in terms of the effects of selected detergents, fatty acids and cations, as well as heating at 60 degrees C, on four of its activities. Results showed that ostrich skeletal muscle 20S proteasome was affected in a non-concentration-dependent manner by the selected detergents and fatty acids. Monounsaturated fatty acids, unlike unsaturated fatty acids, showed no major effects on the activities of the ostrich enzyme. The enzyme did not show sensitivity towards monovalent cations and the only divalent cations that showed a relevant effect were Ca2+ and Mg2+. Heating at 60 degrees C for 1-2 min had a substantial activating effect only on the peptidylglutamylpeptide-hydrolase (PGPH) and caseinolytic activities. In conclusion, many of the effects by the abovementioned reagents and conditions were noticeably different to those shown on different sources of the enzyme, further demonstrating the unique kinetic characteristics of the ostrich skeletal muscle 20S proteasome.  相似文献   

6.
Aspergillus sp. CH-Y-1043 synthesizes pectin lyase when grown on citrus pectin at 37° C. Production is favoured by increased esterification degree of the pectin used as carbon source. This enzyme displays higher activity at pH values of 8.5–8.8 and temperatures of 40–45° C. The optimal substrate for the enzyme was highly esterified pectin and no enzymatic activity was registered on polygalacturonic acid. The activity is stimulated by, though not dependent on, divalent cations (Ca2+, Mg2+, Mn2+, Ba2+ and Co2+) and inhibited by Zn2+, and it is not sensitive to the addition of EDTA. The enzyme is very stable when exposed to pH variations: at 4° C it preserves more than 95% of its activity at pHs ranging from 2.0 to 10.0, and at 30° C stability is preserved at pHs ranging from 4.0 to 8.0. At a constant pH of 5.0, the enzyme conserves its stability at temperatures ranging from 4 to 50° C and at pH 8.0 sensitivity to temperature increased. The results on the endo-exo nature of the enzyme suggest that this is an exo-pectin lyase. Correspondence to: G. Aguilar  相似文献   

7.
Using [U-14C]phosphatidylinositol as substrate, Ca2+-dependent phospholipase C activity was detected in a group of bovine adrenal medullary proteins that bind to chromaffin granule membranes in the presence of Ca2+ ("chromobindins," Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J. (1983) J. Biol. Chem. 258, 14664-14674). The activity was maximal at neutral pH and represented an 80- to 240-fold enrichment of adrenal medullary cytosol phospholipase C activity measured at pH 7.3. The stimulation of activity by Ca2+ was complex; no activity was present in the absence of Ca2+, 25% activation occurred at 1 microM Ca2+, and full activation at 5 mM Ca2+. The enzyme bound to chromaffin granule membranes in the presence of 2 mM Ca2+ but was released at 40 microM Ca2+, suggesting that intrinsic enzyme activity may be regulated by [Ca2+] at 1 microM, but additional activation at higher concentrations of Ca2+ is seen in vitro as a result of Ca2+-dependent binding of the active enzyme to substrate-containing membranes. This enzyme may generate diacylglycerol and phosphorylated inositol to act as intracellular messengers in the vicinity of the chromaffin granule membrane during the process of exocytosis.  相似文献   

8.
The distribution of dye-linked L-amino acid dehydrogenases was investigated in several hyperthermophiles, and the activity of dye-linked L-proline dehydrogenase (dye-L-proDH, L-proline:acceptor oxidoreductase) was found in the crude extract of some Thermococcales strains. The enzyme was purified to homogeneity from a hyperthermophilic archaeon, Thermococcus profundus DSM 9503, which exhibited the highest specific activity in the crude extract. The molecular mass of the enzyme was about 160 kDa, and the enzyme consisted of heterotetrameric subunits (alpha(2) beta(2)) with two different molecular masses of about 50 and 40 kDa. The N-terminal amino acid sequences of the alpha-subunit (50-kDa subunit) and the beta-subunit (40-kDa subunit) were MRLTEHPILDFSERRGRKVTIHF and XRSEAKTVIIGGGIIGLSIAYNLAK, respectively. Dye-L-proDH was extraordinarily stable among the dye-linked dehydrogenases under various conditions: the enzyme retained its full activity upon incubation at 70 degrees C for 10 min, and ca. 40% of the activity still remained after heating at 80 degrees C for 120 min. The enzyme did not lose the activity upon incubation over a wide range of pHs from 4.0 to 10.0 at 50 degrees C for 10 min. The enzyme exclusively catalyzed L-proline dehydrogenation using 2,6-dichloroindophenol (Cl2Ind) as an electron acceptor. The Michaelis constants for L-proline and Cl2Ind were determined to be 2.05 and 0.073 mM, respectively. The reaction product was identified as Delta(1)-pyrroline-5-carboxylate by thin-layer chromatography. The prosthetic group of the enzyme was identified as flavin adenine dinucleotide by high-pressure liquid chromatography. In addition, the simple and specific determination of L-proline at concentrations from 0.10 to 2.5 mM using the stable dye-L-proDH was achieved.  相似文献   

9.
A thermostable L-aminoacylase from Thermococcus litoralis was cloned, sequenced, and overexpressed in Escherichia coli. The enzyme is a homotetramer of 43 kDa monomers and has an 82% sequence identity to an aminoacylase from Pyrococcus horikoshii and 45% sequence identity to a carboxypeptidase from Sulfolobus solfataricus. It contains one cysteine residue that is highly conserved among aminoacylases. Cell-free extracts of the recombinant enzyme were characterized and were found to have optimal activity at 85 degrees C in Tris-HCl at pH 8.0. The recombinant enzyme is thermostable, with a half-life of 25 h at 70 degrees C. Aminoacylase inhibitors, such as mono-tert-butyl malonate, had only a slight effect on activity. The enzyme was partially inhibited by EDTA and p-hydroxymercuribenzoate, suggesting that the cysteine residue and a metal ion are important, but not essential, for activity. Addition of Zn2+ and Co2+ to the apoenzyme increased the enzyme activity, whereas Sn4+ and Cu2+ almost completely abolished enzyme activity. The enzyme was most specific for substrates containing N-benzoyl- or N-chloroacetyl-amino acids. preferring substrates containing hydrophobic, uncharged, or weakly charged amino acids such as phenylalanine, methionine, and cysteine.  相似文献   

10.
We have discovered and characterized a kallikrein-like latent serine protease in intact human erythrocytes and ghosts. The enzyme is activatable by trypsin. The solubilized enzyme has esterolytic activity with a pH optimum of 9; but the membrane-associated activity increases almost linearly up to pH 10. The activated enzyme releases kinin from bovine low molecular weight kininogen. Enzyme activity is inhibited by TosLysCH2Cl , phenylmethylsulfonyl fluoride, aprotinin and amiloride, and weakly by soybean or lima bean trypsin inhibitor. It is inhibited by Co2+, Zn2+ and Mn2+ but is stimulated by Fe2+, deoxycholate and phospholipase A2. An erythrocyte membrane protein (Mr = 88,000) with an active site serine residue was identified with [14C]-diisopropylphosphorofluoridate labeling. Consistent with the finding of tryptic activation of the latent erythrocyte serine protease, trypsin treatment reduced the density of labeling of this protein and revealed a lower molecular weight form (Mr = 64,000). Possible relationships between the activity of this newly identified serine protease and events such as erythrocyte membrane ion fluxes might be of interest.  相似文献   

11.
The short-lived enzyme S-adenosylmethionine decarboxylase uses a covalently bound pyruvoyl cofactor to catalyze the formation of decarboxylated S-adenosylmethionine, which then donates an aminopropyl group for polyamine biosynthesis. Here we demonstrate that S-adenosylmethionine decarboxylase is ubiquitinated and degraded by the 26 S proteasome in vivo, a process that is accelerated by inactivation of S-adenosylmethionine decarboxylase by substrate-mediated transamination of its pyruvoyl cofactor. Proteasome inhibition in COS-7 cells prevents the degradation of S-adenosylmethionine decarboxylase antigen; however, even brief inhibition of the 26 S proteasome caused substantial losses of S-adenosylmethionine decarboxylase activity despite accumulation of S-adenosylmethionine decarboxylase antigen. Levels of the enzyme's substrate (S-adenosylmethionine) increased rapidly after 26 S proteasome inhibition, and this increase in substrate level is consistent with the observed loss of activity arising from an increased rate of inactivation by substrate-mediated transamination. Evidence is also presented that this substrate-mediated transamination accelerates normal degradation of S-adenosylmethionine decarboxylase, as the rate of degradation of the enzyme was increased in the presence of AbeAdo (5'-([(Z)-4-amino-2-butenyl]methylamino]-5'-deoxyadenosine) (a substrate analogue that transaminates the enzyme); conversely, when the intracellular substrate level was reduced by methionine deprivation, the rate of degradation of the enzyme was decreased. Ubiquitination of S-adenosylmethionine decarboxylase is demonstrated by isolation of His-tagged AdoMetDC (S-adenosylmethionine decarboxylase) from COS-7 cells co-transfected with hemagglutinin-tagged ubiquitin and showing bands that were immunoreactive to both anti-AdoMetDC antibody and anti-hemagglutinin antibody. This is the first study to demonstrate that AdoMetDC is ubiquitinated and degraded by the 26 S proteasome, and substrate-mediated acceleration of degradation is a unique finding.  相似文献   

12.
Carbamyl phosphate synthetase A of Neurospora crassa.   总被引:7,自引:2,他引:5       下载免费PDF全文
Carbamyl phosphate synthetase A of Neurospora crassa was partially purified from mitochondrial extracts. It is an extremely unstable enzyme (t 1/2 = 45 min at 25 detrees C) made up of two unequal subunits. The native enzyme has a molecular weight of approximately 175,000, and the large subunit has a molecular weight of about 125,000. Both the native enzyme and its large subunit are quite asymmetric, as revealed by slow sedimentation in sucrose gradents (7.3S and 6.6S, respectively). The small subunit has not been identified physically as a separate entity. The denaturation of the native, glutamine-dependent activity is correlated with dissociation of subunits, the larger of which retains a more stable, ammonia-dependent activity. Neither substrates nor any other agents except glycerol or polyethylene glycol appreciably stabilized the glutamine-dependent activity. Kinetic studies showed the native enzyme to have a Km for glutamine of about 0.16 mM, and a Km for NH4Cl of about 16 mM, at the optimal pH, 8.0. The enzyme, using either N donor, has a K+ requirement for activity, for which NH4+ can substitute. The glutamine leads to glutamate reaction, which requires the small subunit, also requires the large subunit and all reaction substrates for optimal activity. Other evidences of subunit interaction are the greater activity of the native enzyme, as opposed to the large subunit, with low concentrations of adenosine 5'-triphosphate-Mg2+, and in the stimulation of the ammonia-dependent activity of the native enzyme by glycine. Curiously, although the enzyme's role in biosynthesis is confined to the arginine pathway, it is completely indifferent to arginine or its precursors as feedback effectors or activators. The enzyme is compared with carbamyl phosphate synthetases of other organisms.  相似文献   

13.
The enzyme beta-galactosidase was purified from a cold-adapted organism isolated from Antarctica. The organism was identified as a psychotrophic Pseudoalteromonas sp. The enzyme was purified with high yields by a rapid purification scheme involving extraction in an aqueous two-phase system followed by hydrophobic interaction chromatography and ultrafiltration. The beta-galactosidase was optimally active at pH 9 and at 26 degrees C when assayed with o-nitrophenyl-beta-D-galactopyranoside as substrate for 2 min. The enzyme activity was highly sensitive to temperature above 30 degrees C and was undetectable at 40 degrees C. The cations Na+, K+, Mg2+ and Mn2+ activated the enzyme while Ca2+, Hg2+, Cu2+ and Zn2+ inhibited activity. The shelf life of the pure enzyme at 4 degrees C was significantly enhanced in the presence of 0.1% (w/v) polyethyleneimine. The pure beta-galactosidase was also evaluated for lactose hydrolysis. More than 50% lactose hydrolysis was achieved in 8 h in buffer at an enzyme concentration of 1 U/ml, and was increased to 70% in the presence of 0.1% (w/v) polyethyleneimine. The extent of lactose hydrolysis was 40-50% in milk. The enzyme could be immobilized to Sepharose via different chemistries with 60-70% retention of activity. The immobilized enzyme was more stable and its ability to hydrolyze lactose was similar to that of the soluble enzyme.  相似文献   

14.
In Reuber rat hepatoma cells (R-Y121B), alkaline phosphatase activity increased without de novo enzyme synthesis (Sorimachi, K., and Yasumura, Y. (1986) Biochim. Biophys. Acta 885, 272-281). The enzyme was partially purified by butanol extraction from the particulate fractions. The incubation of the extracted alkaline phosphatase with the cytosol fraction induced a large increase in enzyme activity (5-10-fold of control). The dialyzed cytosol was more effective than the undialyzed cytosol during an early period of incubation at 37 degrees C. This difference between the dialyzed and the undialyzed cytosol fractions was due to endogenous Na+. For maximal activation of the enzyme, both Mg2+ above 1 mM and Zn2+ at low concentrations (below 0.01 mM) were needed, although Zn2+ at high concentrations (above 0.1 mM) showed an inhibitory effect. Zn2+ and Mg2+ alone slightly increased alkaline phosphatase activity. This activation of the enzyme was temperature dependent and was not observed at 0 or 4 degrees C. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the increase in alkaline phosphatase activity did not involve the fragmentation of the enzyme and that 65Zn2+ bound to it during enzyme activation with 65Zn2+ and Mg2+. The cytosol fraction not only supplied Zn2+ to the nascent enzyme but also increased the maximal enzyme activity more than did direct addition of metal ions. Ferritin and metallothionein contributed to the activation of alkaline phosphatase with the metal ions. Since the binding of Zn2+ and Mg2+ to the nascent alkaline phosphatase is disturbed in Reuber rat hepatoma cells (R-Y121B), the apoenzyme is accumulated inside the cells. The binding of Zn2+ and Mg2+ to the apoenzyme readily takes place in the cell homogenates accompanied by an increase in catalytic activity without new enzyme synthesis.  相似文献   

15.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

16.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

17.
18.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

19.
Neutral alpha-D-mannosidase from monkey brain was purified by Co2+-chelate affinity chromatography and immunoadsorbent affinity chromatography. The purified enzyme, with subunit Mr 45,000, was essentially homogeneous with only traces of two contaminant proteins as revealed by SDS/polyacrylamide-gel electrophoresis and AgNO3 staining. The purified enzyme, on preincubation with Co2+ at 37 degrees C or 60 degrees C followed by assay, showed a time-dependent enhancement in activity. The enhanced activity of the enzyme persisted even after removal of the Co2+. Bacitracin could partially prevent the activation. An aminopeptidase activity that was stimulated by Co2+ both at 37 degrees C and at 60 degrees C was present in the purified enzyme. After preincubation of the enzyme with Co2+ there was evidence for the release of amino acids, as revealed by t.l.c., but the Mr determined by SDS/polyacrylamide-gel electrophoresis was not appreciably altered. It is suggested that a Co2+-stimulated thermostable aminopeptidase, inseparable from the neutral mannosidase, may be involved in the stimulation of neutral mannosidase activity during its preincubation with Co2+.  相似文献   

20.
Soluble glutamine synthetase activity (L-glutamate:ammonia ligase, ADP forming, EC 6.3.1.2) was purified to electrophoretic homogeneity from the filamentous non-N2-fixing cyanobacterium Phormidium laminosum (OH-1-p.Cl1) by using conventional purification procedures in the absence of stabilizing ligands. The pure enzyme showed a specific activity of 152 mumol of gamma-glutamylhydroxamate formed.min-1 (transferase activity), which corresponded to 4.4 mumol of Pi released.min-1 (biosynthetic activity). The relative molecular mass of the native enzyme was 602 kilodaltons and was composed of 12 identically sized subunits of 52 kilodaltons. Biosynthetic activity required the presence of Mg2+ as an essential activator, although Co2+ and Zn2+ were partially effective. The kinetics of activation by Mg2+, Co2+, and Zn2+ were sigmoidal, and concentrations required for half-maximal activity were 18 mM (h = 2.2), 6.3 mM (h = 5.6), and 6.3 mM (h = 2.45), respectively. However, transferase activity required Mn2+ (Ka = 3.5 microM), Cu2+, Co2+, or Mg2+ being less effective. The substrate affinities calculated for L-Glu, ammonium, ATP, L-Gln, and hydroxylamine were 15, 0.4, 1.9 (h = 0.75), 14, and 4.1 mM, respectively. Optimal pH and temperature were 7.2 and 55 degrees C for biosynthetic activity and 7.5 and 45 degrees C for transferase activity. The biosynthetic reaction mechanism proceeded according to an ordered three-reactant system, the binding order being ammonium, L-Glu, and ATP. The presence of Mn2+ or Mg2+ drastically affected the thermostability of transferase and biosynthetic activities. Heat inactivation of biosynthetic activity in the presence of Mn2+ obeyed first-order kinetics, with an Ea of 76.8 kcal (ca. 321 kJ) mol-1. Gly, L-Asp, L-Ala, L-Ser and, with lower efficiency, L-Lys and L-Met, L-Lys, and L-Glu inhibited only transferase activity. No cumulative inhibition was observed when mixtures of amino acids were used. Biosynthetic activity was inhibited by AMP (Ki= 7 mM), ADP (Ki= 2.3 mM), p-hydroxymercuribenzoate (Ki= 25 microM), and L-methionine-D, L-sulfoximine (Ki= 2 microM). The enzyme was not activated in vitro by chemically reduced Anabaena thioredoxin. This is the first report of glutamine synthetase activity purified from a filamentous non-N2-fixing cyanobacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号