首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined variation in leaf traits and water relations in 12 evergreen and semideciduous woody species that occur in both seasonal wet and dry forests in Costa Rica and compared intra-specific leaf–trait correlations to those found in inter-specific global studies. The following traits were measured in both forests across seasons for 2 years: leaf nitrogen (N), leaf carbon (C), specific leaf area (SLA), toughness, cuticle thickness, leaf thickness, and leaf lifespan (LLS). Leaf water potential (LWP) and water content (LWC) were measured as indices of plant available water. Canopy openness, soil moisture, and herbivory were also measured to compare environmental variation across sites. Although species contributed the greatest amount to variation in traits, season, forest, and their interaction had a large influence on patterns of intra-specific leaf–trait variation. Leaf traits that contributed most to variation across sites were C, LWP, leaf thickness, and SLA. Traits that contributed most to variation across seasons were leaf toughness, LWP, and LWC. Furthermore, leaf traits were more correlated (i.e., number and strength of correlations) in the dry than in the wet forest. In contrast to results from global literature syntheses, there was no correlation between LLS and N, or LLS and SLA. Both light and water availability vary seasonally and may be causing variation in a number of leaf traits, specifically those that relate to water relations and leaf economics. Strong seasonality may cause leaf–trait relationships at the local scale to differ from those documented in continental and global-scale studies.  相似文献   

2.
不同种源刨花楠林下幼苗叶功能性状与地理环境的关系   总被引:2,自引:0,他引:2  
研究9个种源地天然刨花楠林下幼苗主要叶功能性状差异及其与地理环境的关系,分析刨花楠林下幼苗对地理环境变化的响应与适应机制.结果表明: 不同种源间刨花楠林下幼苗主要叶功能性状种内变异系数较大(8.8%~28.2%),其中种源间比叶面积、叶相对含水率、叶组织密度和叶厚差异显著,表明刨花楠林下幼苗具有较强的叶片形态可塑性.叶组织密度与叶干物质含量、叶相对含水率均呈显著正相关,与比叶面积、叶厚则呈显著负相关;比叶面积与叶干物质含量、叶面积均呈显著负相关,反映刨花楠林下幼苗可通过叶片性状组合的调整和平衡以响应地理环境变化.影响刨花楠林下幼苗叶功能性状可塑性的主要环境因子为经度、纬度、>10 ℃年积温和年均温.叶厚随着经度的增加而降低,叶干物质含量和叶相对含水率则随着经度的增加而增加;叶组织密度与经度和年均温呈显著正相关,且经度对其影响大于年均温;叶面积与>10 ℃年积温和经度呈显著正相关,且前者对其影响大于后者.  相似文献   

3.
Abstract Leaf miners are insects whose larval stages live between layers of leaf epidermis, feeding on mesophyll and lower epidermis to create mine‐like cavities. Little is known about the ecology or distribution of leaf miners in Australia. We investigated the incidence of leaf miners in relation to aridity, vegetation types, host plant taxonomy, leaf traits, canopy cover and latitude. We surveyed leaf miners at 15 sites in NSW, eastern Australia, situated along a rainfall gradient from 300 to 1700 mm per annum and a latitudinal gradient of 28°S to 33°S, within four vegetation types (mallee, heath, woodland and rainforest). Leaf mining was recorded from 36 plant species, 89% of which had no previous record of mining. The proportion of mined plant species at each site varied, but there was no significant difference between vegetation types. Leaf mining presence was positively correlated with both total leaf length and leaf thickness. No significant correlations were found between the proportion of mined species at a site and rainfall, latitude or foliar projected cover. We conclude that leaf mining is a widespread type of insect herbivory whose distribution patterns are more likely to be influenced by biotic than abiotic factors.  相似文献   

4.
Curtis D. Holder 《Plant Ecology》2011,212(11):1913-1926
Leaf water repellency (LWR) is the degree to which water droplets repel from a leaf surface. LWR has been suggested as an adaptation to maximize gas exchange during photosynthesis and as a mechanism to increase hydrological inputs beneath the canopy. This article examined the relationships between LWR and leaf traits in 33 species across three distinct biogeographical regions (tropical montane cloud forests in Guatemala; tropical dry forests in Guatemala; and foothills-grassland vegetation in the U.S.). The objectives of this study were to determine if leaf area, leaf thickness, leaf biomass, specific leaf area, leaf toughness, stomatal density, and the presence of epiphylls explained variation in LWR in the 33 species. LWR was greatest in the dry foothills-grassland ecotone in Colorado and lowest in humid cloud forest of the Sierra de las Minas. Most possible pairs of species were significantly different from each other at each study area. Significant variation in all leaf traits was found among species and sites. LWR was not explained by leaf area, leaf thickness, leaf biomass, and specific leaf area. The presence of epiphylls influenced LWR on the abaxial leaf surfaces of species of the Sierra de las Minas. The article concludes that leaf traits related to size and mass do not influence LWR; however, the variation in LWR in species between distinct biogeographical regions remains an important research area in ecohydrology.  相似文献   

5.
Nine leaf traits (area, fresh weight, dry weight, volume, density, thickness, specific leaf area (SLA), dry matter content (LDMC), leaf nitrogen content (LNC)) from ten plant species at eight sites in southern mediterranean France were investigated in order to assess their variability along a climatic gradient and their ranking congruency power. After examination of trait correlation patterns, we reduced the nine initial leaf traits to four traits, representative of three correlation groups: allometric traits (dry weight), functional traits (SLA and dry matter percentage) and Leaf Thickness. We analysed the variability of these four leaf traits at species and site level. We observed that between species variation (between 64.5 for SLA and 91% for LDMC) is higher than within species variation. Allowing a good congruency of species ranking assessed by spearman rank correlation () and a good reallocation of individuals to species by discriminant analysis. A site level variability (between 0.7% for Dry weight and 6.9% for SLA) was identified and environmental parameters (altitude, temperature, precipitation, nitrogen, pH) were considered as probable control factors. We found significant correlation between SLA, LDMC and the average minimum temperature (respectively r=0.87 and r=-0,9) and no correlation for the other traits or environmental parameters. Furthermore, we conclude that two leaf traits appear to be central in describing species: specific leaf area (SLA), percentage of dry matter (LDMC. While, SLA and LDMC are strongly correlated, LDMC appears to be less variable than SLA. According to our results the Dry Matter Content (or its reversal Leaf Water Content) appears the best leaf trait to be quantified for plant functional screening. Leaf thickness appeared to be rather uncorrelated with other leaf traits and show no environmental contingency; its variability could not have been explained in this study. Further studies should focus on this trait. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
岷江上游干旱河谷矮探春叶片特征与环境因子的关系   总被引:3,自引:0,他引:3  
对岷江上游干旱河谷矮探春(Jasminumhumile L.)的叶片形态解剖特征进行了显微观察,分析了海拔梯度上叶片形态与环境因子的关系。结果表明,矮探春叶片呈长椭圆形,叶肉组织分化明显;随着海拔升高,叶面积、厚度、干重、饱和含水量、海绵组织厚度,中脉厚度以及厚角组织厚度/中脉厚度之比(M/C)等呈增大趋势,而栅栏组织厚度/海绵组织厚度之比(P/S)则减小;叶片长/宽比、表皮厚度、栅栏组织厚度和比叶重在海拔梯度上无明显差异。叶面积、干重、饱和含水量、叶厚度和海绵组织厚度等参数两两之间呈显著正相关,而它们与P/S均呈显著负相关。叶面积、干重、海绵组织厚度和M/C等主要受土壤含水量的影响,并随着土壤含水量增加而增大;P/S随着土壤含水量和年降水量增加而减小;叶片厚度、饱和含水量和中脉厚度均随着温和度的降低而增大。岷江上游干旱河谷区土壤水份和生长季温度可能是影响矮探春叶片形态解剖特征的主要因子。  相似文献   

7.
叶片性状很大程度上反映了植物的功能及其对环境的适应。叶片性状的变异受环境及遗传特性的影响,但是很多研究未能很好区分出它们的相对影响。本研究通过将同一烟草品种种植于不同地点来认识环境对烟草叶片性状的影响;将不同的烟草品种种植于同一环境来了解遗传差异对烟草叶片性状的影响。研究发现,叶脉密度和叶片厚度受环境的影响较大,气孔密度和长度受环境的影响较小。气孔密度和叶片厚度受遗传的影响较大,叶脉密度和气孔长度受遗传的影响较小。在生长温度高的地方,烟草叶脉密度越大。研究结果对于认识植物对环境的适应性具有重要意义。  相似文献   

8.
Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species.  相似文献   

9.
Cell wall fibre and lamina density may interactively affect leaf toughness and leaf lifespan. Here, we tested this with seedlings of 24 neotropical tree species differing in shade tolerance and leaf lifespan under standardized field conditions (140-867 d in gaps; longer in shade). We quantified toughness with a cutting test, explicitly seeking a mechanistic linkage to fibre. Lamina density, but not fracture toughness, exhibited a plastic response to gaps vs shade, while neither trait was affected by leaf age. Toughness corrected for lamina density, a recently recognized indicator of material strength per unit mass, was linearly correlated with cellulose content per unit dry mass. Leaf lifespan was positively correlated with cellulose and toughness in shade-tolerant species but only weakly in gap-dependent species. Leaf lifespan was uncorrelated with lamina thickness, phenolics and tannin concentrations. In path analysis including all species, leaf lifespan was directly enhanced by density and toughness, and indirectly by cellulose via its effect on toughness. Different suites of leaf traits were correlated with early seedling survival in gaps vs shade. In conclusion, cellulose and lamina density jointly enhance leaf fracture toughness, and these carbon-based physical traits, rather than phenolic-based defence, explain species differences in herbivory, leaf lifespan and shade survival.  相似文献   

10.
Differential herbivory in contrasting environments is commonly explained by differences in plant traits. When several plant traits are considered, separate correlation analyses between herbivory and candidate traits are typically conducted. This makes it difficult to discern which trait best explain the herbivory patterns, or to avoid spurious inferences due to correlated characters. Aristotelia chilensis saplings sustain greater herbivory in shaded environments than in open habitats. We measured alkaloids, phenolics, trichomes, leaf thickness and water content in the same plants sampled for herbivory. We conducted a multiple regression analysis to estimate the relationship between herbivory and each plant trait accounting for the effect of correlated traits, thus identifying which trait(s) better explain(s) the differential herbivory on A. chilensis. We also estimated insect abundance in both light environments. Palatability bioassays tested whether leaf consumption by the main herbivore on A. chilensis was consistent with field herbivory patterns. Overall insect abundance was similar in open and shaded environments. While saplings in open environments had thicker leaves, lower leaf water content, and higher concentration of alkaloids and phenolics, no difference in trichome density was detected. The multiple regression analysis showed that leaf thickness was the only trait significantly associated with herbivory. Thicker leaves received less damage by herbivores. Sawfly larvae consumed more leaf tissue when fed on shade leaves. This result is consistent with field herbivory and, together with results of insect abundance, renders unlikely that the differential herbivory in A. chilensis was due to greater herbivory pressure in open habitats.  相似文献   

11.
王鑫  杨磊  赵倩  张钦弟 《生态学报》2020,40(8):2691-2697
植物功能性状可以响应生境的变化并决定生态系统的功能,探究植物功能性状间的关系及其随土壤有效水分梯度的变化规律,对认识不同水分条件下植被在群落水平碳水代谢关系和维持水分平衡的生理生态学机制具有重要意义。以甘肃定西典型半干旱黄土小流域草地群落为研究对象,采用排序分析和回归拟合方法,分析了30个代表性草地样地中7个植物功能性状加权均值对土壤有效水分的响应以及响应性状间的相关关系。结果显示:(1)7个性状中,除叶宽与土壤有效水分无明显相关外,叶长、株高、叶面积、比叶面积、叶厚和叶干物质含量均与土壤有效水分显著性相关,可识别为草地在群落水平对土壤水分的响应性状。(2)草地群落通过降低株高,减小叶长、叶面积和比叶面积,增加叶厚和叶干物质含量以适应土壤有效水分减少;其中叶干物质含量的解释度最大,是土壤水分的最优响应性状。(3)除叶厚与叶长无显著相关外,其余功能性状均存在显著相关,说明草地群落的功能性状在土壤水分梯度上已基本形成了一个相互权衡或协同变化的功能性状组合。  相似文献   

12.
植物功能性状能够响应生存环境的变化并直接决定着生态系统功能。为了揭示围封与放牧管理对物种共存和驱动群落构建的影响机理,该研究以青藏高原东缘高寒草甸为对象,分析了围封与放牧处理对植物功能性状和功能多样性的影响。结果显示:(1)在群落水平,放牧显著降低了比叶面积和植物高度;在物种水平,放牧群落中多数杂类草比叶面积减小,而莎草类和禾草类的比叶面积在处理间无显著差异。(2)叶干物质含量与比叶面积在围封和放牧处理中均呈显著负相关关系,在放牧处理中,叶干物质含量与植物高度呈显著的二次函数关系,即随着叶干物质含量的增大,植物高度先减小后增大;在同等比叶面积的情况下,与围封相比,放牧降低了叶干物质含量;在相同叶干物质含量的情况下,与围封相比,放牧降低了植物高度。(3)放牧在总体上降低了种间性状的平均差异,植物性状表现出趋同响应,具体表现为放牧减小了叶干物质含量和植物高度的种间差异;与围封相比,放牧显著提高了功能均匀度,减小了功能分离度。研究表明,不同植物种对放牧的响应模式存在差异,放牧降低了种间对光资源的竞争,可能增加了对土壤养分的竞争,放牧驱动群落构建的过程中,土壤养分是非常重要的作用因子,说明放牧影响物种共存依赖于对多种资源的竞争。  相似文献   

13.
Abstract 1. Plants experience herbivory on many different tissues that can affect reproduction directly by damaging tissues and decreasing resource availability, or indirectly via interactions with other species such as pollinators. 2. This study investigated the combined effects of leaf herbivory, root herbivory, and pollination on subsequent damage, pollinator preference, and plant performance in a field experiment using butternut squash (Cucurbita moschata). Leaf and root herbivory were manipulated using adult and larval striped cucumber beetles (Acalymma vittatum F.), a cucurbit specialist. 3. Leaf herbivory reduced subsequent pistillate floral damage and powdery mildew (Sphaerotheca fuliginea) infection. In spite of these induced defences, the overall effect of leaf herbivory on plant reproduction was negative. Leaf herbivory reduced staminate flower production, fruit number, and seed weight. In contrast, root herbivory had a minimal impact on plant reproduction. 4. Neither leaf nor root herbivory altered pollinator visitation or floral traits, suggesting that reductions in plant performance from herbivory were as a result of direct rather than indirect effects. In addition, no measured aspect of reproduction was pollen limited. 5. Our study reveals that although leaf herbivory by the striped cucumber beetle can protect against subsequent damage, this protection was not enough to prevent the negative impacts on plant performance.  相似文献   

14.
大青沟自然保护区主要森林群落优势种的叶性状   总被引:1,自引:0,他引:1  
植物功能性状是近年来生态学研究的热点。其中叶功能性状与植株生物量和植物对资源的获得、利用及利用效率的关系最为密切。大青沟森林植物群落分布于科尔沁沙地,生境条件非常特殊,在沙沟里存在着一片茂密的森林,与周围浩瀚无垠的沙坨景观形成极为鲜明的对照。从沟底到沟顶,虽然海拔高度仅相差六、七十米,但由于距离沟底水源不同,土壤条件差异大,形成了不同的森林植物群落类型。大果榆群落、蒙古栎群落和水曲柳群落分别分布在大青沟自然保护区的沟顶、沟中和沟底。为了对大青沟自然保护区,不同环境梯度下的森林植物群落叶片功能性状进行研究,以大青沟自然保护区大果榆、蒙古栎、水曲柳3种主要森林群落为研究对象,分别测定不同群落优势种的叶厚度、比叶面积、叶干物质含量、叶大小和叶干重等5项叶功能性状,研究叶功能性状之间的关系,并对不同生长型、不同群落叶功能性状进行比较。相关分析结果表明,叶厚度与比叶面积呈极显著负相关,与叶大小和叶干重呈极显著正相关;比叶面积与叶干物质含量、叶干重呈极显著负相关,与叶大小呈显著正相关;叶干物质含量与叶大小呈极显著负相关,与叶干重呈极显著正相关;叶大小与叶干重呈极显著正相关。不同生长型植物叶片性状的分析表明,草本植物的叶干物质含量比乔木和灌木低,而其比叶面积高于乔木和灌木;对不同群落叶功能性状进行比较发现,大果榆群落和蒙古栎群落乔木、灌木叶厚度与干物质含量显著高于水曲柳群落的叶厚度与干物质含量,二者比叶面积显著低于水曲柳群落。大果榆群落和蒙古栎群落从叶功能性状的角度,它们具有较高的叶干物质含量和较低的比叶面积,体现出适应干旱生境叶片的特征。水曲柳群落呈现出低叶干物质含量、高比叶面积的特征,体现出适应湿润、土壤水分较好生境的特征。不同群落通过调节自身的物种组成,形成不同的功能性状组合来适应环境。  相似文献   

15.
松嫩草地66种草本植物叶片性状特征   总被引:3,自引:0,他引:3  
植物叶片功能性状及其相互关系越来越受到关注.以松嫩草地66种草本植物为研究对象,测量叶片干物质含量、比叶面积、叶片厚度、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量,检验性状间的相互关系,比较不同功能群(多年生根茎禾草,多年生丛生禾草,多年生杂类草,1年生或2年生草本)间性状的差异性.结果表明,叶片厚度变异系数最大,比叶面积、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量之间存在显著的正相关关系;叶片于物质含量与叶片磷含量没有显著的相关关系,与其它叶片性状呈显著的负相关关系;叶片厚度只与叶片干物质含量和比叶面积呈显著的负相关关系,与其它叶片性状不相关.叶片干物质含量、比叶面积、叶片厚度、叶片氮、磷含量在4个功能群间差异显著,叶绿素含量和类胡萝卜素含量在各个功能群间差异不显著;多年生根茎禾草和多年生丛生禾草叶片的7个性状差异不显著;多年生根茎禾草和多年生丛生禾草的叶片干物质含量高于多年生杂类草和1年生或2年生草本,其它性状小于这两个功能群.  相似文献   

16.
为探讨不同树种对滨海沙地干旱贫瘠环境的适应策略,以滨海沙地主要造林树种木麻黄、湿地松、厚荚相思和尾巨桉为对象,研究了不同树种叶片功能性状及养分重吸收特征.结果表明:阔叶树种(厚荚相思和尾巨桉)的叶面积、比叶面积显著高于针叶树种(木麻黄和湿地松),而针叶树叶干物质含量、叶厚度最高.成熟叶和凋落叶的N、P含量表现为阔叶树高于针叶树,成熟叶高于凋落叶,但凋落叶N∶P较高.针叶树种的N、P养分重吸收效率大于阔叶树种,P重吸收效率明显高于N,木麻黄、湿地松、厚荚相思和尾巨桉的N、P吸收效率分别为64.2%、63.1%、47.0%、16.8%和92.5%、81.6%、80.3%、18.0%.比叶面积与叶片N、P含量呈显著正相关,与叶干物质含量,叶厚度以及N、P养分重吸收效率呈显著负相关;叶干物质含量与叶厚度及N、P养分重吸收效率呈显著正相关.就叶片功能的权衡关系而言,木麻黄和湿地松属于缓慢投资-收益型物种,具有较高的养分重吸收效率,而厚荚相思和尾巨桉属于快速投资-收益型物种,养分的重吸收效率较低.不同滨海沙地造林树种通过叶片功能性状及养分重吸收之间的相互协调实现对滨海沙地特殊生境的适应性.  相似文献   

17.
The direct and indirect effects of vegetative herbivory on the mating system of Impatiens capensis were analyzed through a survey of herbivory in natural I. capensis populations and manipulation of leaf damage in the field. Across 10 wild populations of I. capensis proportion of cleistogamous flowers had a significant positive exponential relationship with natural levels of herbivory. Similarly, experimental leaf damage increased the proportion of flowers and seeds that were cleistogamous. Leaf damage also reduced the biomass of cleistogamous progeny more severely relative to that of chasmogamous progeny. The cumulative effect of leaf damage was to increase plant reliance on fitness derived from cleistogamous progeny. Leaf damage indirectly affected mating system traits by reducing chasmogamous flower size, leading to a reduction in pollinator visitation. Under these experimental conditions, herbivory did not significantly reduce the number of simultaneously open flowers and potential for geitonogamy, nor did it result in significant changes in the composition of the pollinator fauna. These findings are among the first to demonstrate that herbivory has consequences for mating system and should be considered a factor shaping mating system evolution.  相似文献   

18.
Kudo  Gaku 《Plant Ecology》2003,169(1):61-69
Variations in leaf traits (toughness, total nitrogen and total phenolic concentrations) and susceptibility to herbivory in Salix miyabeana were studied among individual trees within a population under field conditions. Leaf quality clearly decreased as season progressed, i.e. increases in leaf toughness and total phenolics and decrease in leaf nitrogen. Seasonal pattern and extent of herbivore attack were similar between years. Significant correlation between leaf traits and susceptibility to herbivore attack was detected, while effects of sex and plant size on leaf traits and herbivory were less clear. There was a negative correlation between total nitrogen and total phenolics, and a positive correlation between leaf toughness and total phenolics among trees. Trees with high quality leaves tended to suffer from frequent herbivore attack and leaf damage. Such a clear relationship between leaf traits and susceptibility to herbivory may be related with a life-history strategy of willows, which are rapid-growing pioneer species and generally respond to herbivorous damage not by induced resistance but by compensative growth. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
润楠属植物属于基部被子植物类群,大部分物种局限分布于热带亚热带森林的潮湿生境,但也有些物种分布范围较广。本研究以润楠属11个物种的幼苗为材料,测定了一系列植物叶片水力学性状和解剖结构,包括:比叶重、叶片密度、气孔密度、叶脉密度、膨压丧失点水势、栅栏组织和海绵组织厚度等。结果表明:与其它分布在热带亚热带地区的被子植物相比,润楠属植物的叶脉密度较低,推测叶脉密度受强烈的进化限制;该属植物叶脉密度与气孔密度、栅栏和海绵组织的比值呈显著的正相关,表明该属植物能够维持叶片水平的水分供需平衡;广布种比狭域种具有更低的叶片膨压丧失点和更高的叶片密度,耐旱能力更强,但是比叶重差异不显著;叶片的膨压丧失点与物种的最大树高呈反比,即更高的物种叶片耐失水能力更强,说明植物叶片耐旱性与植物本身的遗传特性有关。本研究结果显示,叶片水力学性状可以较好地用于解释润楠属植物的地理分布。  相似文献   

20.
Moisture availability has the potential to affect tropical forest productivity at scales ranging from leaf to ecosystem. We compared data for leaf photosynthetic, chemical and structural traits of canopy trees, litterfall production and seasonal availability of soil water at four sites across a precipitation gradient (1,800–3,500 mm year–1) in lowland Panamanian forest to determine how productivity at leaf and ecosystem scales may be related. We found stronger seasonality in soil water potential at drier sites. Values were close to zero at all sites during the wet season and varied between a minimum of –2.5 MPa and –0.3 MPa at the driest and wettest sites, respectively, during the dry season. Leaf photosynthesis and nitrogen concentration decreased with increasing precipitation, whereas leaf thickness increased with increasing precipitation. Leaf toughness and fiber/N ratios increased with increasing precipitation indicating reduced nutritional content and palatability with precipitation. Seasonality of litter production and quality decreased with increasing precipitation, but the amount of litterfall produced was not substantially different among sites. It appears that in Neotropical forest, moisture availability is associated with leaf photosynthetic and defensive traits that influence litterfall timing and quality. Therefore, variation in leaf physiological traits has the potential to influence decomposition and nutrient cycling through effects on litter quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号