共查询到20条相似文献,搜索用时 0 毫秒
1.
Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals 总被引:2,自引:0,他引:2
Timo K. Korhonen Eeva-Liisa Nurmiaho-Lassila Tuula Laakso Kielo Haahtela 《Plant and Soil》1986,90(1-3):59-69
Summary The role of fimbriae in enterobacterial adhesion to roots of grasses and cereals is discussed. All nitrogen-fixing enteric bacteria isolated in Finland had fimbriae. AllEnterobacter isolates had mannose-binding type-1 fimbriae, whereas most of theKlebsiella isolates had both type-1 and type-3 fimbriae. The strains were isolated from a total of ten different grass species, and no specific association was found between grass species and bacterial fimbriation, biogroup or serogroup. Purified, radiolabeled fimbriae bound to roots ofPoa pratensis in vitro, and bacterial adhesion was inhibited by Fab fragments specific for fimbriae.Klebsiella strains carrying type-3 fimbriae adhered to roots of various grasses and cereals more efficiently than type-1- or nonfimbriated strains, and it was concluded that type-3 fimbriae are the major adhesions ofKlebsiella. Immunofluorescence studies revealed that the bacteria preferentially adhered to root hairs, and to a lesser extent, to the zone of elongation and the root cap mucilage. No strict host specificity in enterobacterial adhesion was observed. 相似文献
2.
Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems. 相似文献
3.
Purification of the rice embryo lectin and its binding to nitrogen-fixing bacteria from the rhizosphere of rice 总被引:1,自引:0,他引:1
F Tabary J Balandreau R Bourrillon 《Biochemical and biophysical research communications》1984,119(2):549-555
A lectin was purified from rice embryos by aqueous acid extraction of crude embryo powder, followed by ammonium sulfate precipitation, affinity chromatography on agarose p-aminophenyl-beta-D-N-acetylglucosamine and gel-filtration on AcA 54. Its homogeneity was checked by polyacrylamide gel electrophoresis, gel-filtration and immunological methods. The hemagglutinating activity of the purified rice lectin was 0.02 micrograms/ml. This lectin labelled with [14C] acetic anhydride was shown to interact in vitro with different bacteria isolated from the rhizosphere of rice. The most efficient binding was obtained with Beijerinckia V.. The affinity constant Ka was (1.04 +/- 0.30) X 10(7) M-1 and each bacterium contained 1660 +/- 150 lectin receptor sites. In contrast, no interaction between bacteria isolated from the rhizosphere of maize or E. coli K 12 and rice lectin was evidenced. 相似文献
4.
转基因大豆对根际固氮细菌群落多样性的影响 总被引:3,自引:1,他引:3
为了研究种植转基因大豆在土壤生态系统中对固氮细菌的影响,应用PCR-DGGE技术分析种植不同大豆处理下土壤细菌固氮酶nifH基因的分子多样性。结果表明:低GC含量的厚壁菌门出现在DGGE图谱的上部,而且受生育时期影响比较明显;绿菌门相对保守,不受生育时期和种植品种的影响;在测序得到的46个结果中,共计28个属于变形菌门,占60.8%,广泛分布于DGGE胶的各个部位,大部分较稳定,不受种植品种或者采样时间的影响。相对于不同生育时期对根际土壤固氮细菌的影响,种植转基因大豆、亲本非转基因大豆和普通大豆之间的差异并不明显,表明种植转基因大豆对土壤固氮细菌没有明显的影响。 相似文献
5.
Abstract Two new diazotrophic bacteria, Listonella anguillarum and Vibrio campbellii , and one non-nitrogen-fixing bacterium, Staphylococcus sp., were isolated from the rhizosphere of mangrove trees. Strains of these newly-defined diazotrophs are known as pathogenic bacteria in fish and shellfish. During the purification of diazotrophic species from the entire rhizosphere population, N2 -fixation of the bacterial mixtures decreased. When grown in vitro in mixed cultures, the non-fixing bacterium Staphylococcus sp. increased the nitrogen-fixing capacity of L. anguillarum by 17% over the pure culture; the nitrogen-fixing capacity per bacterial cell increased 22%. This interaction was not due to a change in O2 concentration. Staphylococcus sp. decreased the nitrogen-fixing capacity of V. campbellii by 15%.
These findings indicate that (i) other species of rhizosphere bacteria, apart from the common diazotrophic species, should be evaluated for their contribution to the nitrogen-fixation process in mangrove communities; and (ii) the nitrogen-fixing activity detected in the rhizosphere of mangrove plants is probably not the result of individual nitrogen-fixing strains, but the sum of interactions between members of the rhizosphere community. 相似文献
These findings indicate that (i) other species of rhizosphere bacteria, apart from the common diazotrophic species, should be evaluated for their contribution to the nitrogen-fixation process in mangrove communities; and (ii) the nitrogen-fixing activity detected in the rhizosphere of mangrove plants is probably not the result of individual nitrogen-fixing strains, but the sum of interactions between members of the rhizosphere community. 相似文献
6.
7.
Ulisses Nunes da Rocha Leo van Overbeek & Jan Dirk van Elsas 《FEMS microbiology ecology》2009,69(3):313-328
The rhizosphere environment selects a particular microbial community that arises from the one present in bulk soil due to the release of particular compounds in exudates and different opportunities for microbial colonization. During plant–microorganism coevolution, microbial functions supporting plant health and productivity have developed, of which most are described in cultured plant-associated bacteria. This review discusses the state of the art concerning the ecology of the hitherto-uncultured bacteria of the rhizosphere environment, focusing on Acidobacteria, Verrucomicrobia and Planctomycetes . Furthermore, a strategy is proposed to recover bacterial isolates from these taxa from the rhizosphere environment. 相似文献
8.
海洋固氮菌和解磷菌的分离鉴定及发酵条件优化 总被引:1,自引:0,他引:1
【目的】从西沙喜盐草根际沉积物中分离纯化得到具有高效固氮能力及解磷能力的菌株。优化其发酵培养条件,研究其制备海洋微生物菌剂的可能性。【方法】从形态学特征、生理生化、16S rDNA及功能基因水平进行鉴定,通过乙炔还原法、钼锑抗显色法检测菌株的固氮酶活性和解磷能力,单因素法和响应面法优化其发酵培养条件,溶血试验和急性毒性实验鉴定菌株的安全性。【结果】结果表明,菌株AZ16属于星箭头菌(Sagittula stellate),革兰氏阴性菌,选择性固氮培养基中菌落呈黄圆形黏稠状,固氮酶活性达34.63 nmol C2H2/(mL·h),最适生长条件为:盐度25‰、pH 7.5、温度33°C、接种量5.0%;菌株XT37为海洋芽孢杆菌(Bacillus sp.),革兰氏阳性菌,选择性固氮培养基中菌落呈深黄色圆形褶皱,植酸酶活性达239.49μg/L,最适合生长条件为:盐度25‰、pH 6.7、温度28°C、接种量5.0%。溶血实验和急性毒性实验证明两株菌属实际无毒级别。【结论】两株菌具有高效的固氮解磷功能,以及抗高盐、强碱等环境的能力,安全无毒,因此有潜力应用于多功能混合微生物菌剂的研制。 相似文献
9.
10.
Failure of putative nitrogen-fixing bacteria to fix nitrogen 总被引:5,自引:0,他引:5
11.
【目的】固氮菌和氨化细菌是氮循环产生生物有效氮的关键起始环节,直接影响了外来入侵植物的生长速度和扩散进程。然而,关于典型入侵植物薇甘菊根际可培养固氮菌和氨化细菌的研究尚未见报道,这在很大程度上制约了我们对薇甘菊根际高效的氮素转化机制的深刻理解。【方法】采用传统平板涂布培养法对野外采集的薇甘菊根际土壤中的可培养固氮菌和氨化细菌进行了分离鉴定,并进行了接种验证实验。【结果】结果表明,入侵植物薇甘菊根际土壤中的固氮菌和氨化细菌的菌群密度显著高于两个本地伴生植物(火炭母和鸡屎藤),其固氮效率及有机氮矿化效率也优于2个本地种;系统发育分析表明:薇甘菊根际的固氮菌菌株归类于5个属,分别为伯克霍尔德氏菌属(Burkholderia)、肠杆菌属(Enterobacter)、植物杆菌属(Phytobacter)、新肠杆菌属(Kosakonia)和根瘤菌属(Rhizobium);氨化细菌归类于7个属,分别为沙雷氏菌属(Serratia)、不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)、博德特氏菌属(Bordetella)、寡养单胞菌属(Stenotrophomonas)、苍... 相似文献
12.
氮作为构成蛋白质的主要成分, 是植物生长的必要营养物质。陆地生态系统普遍存在土壤氮缺乏的现象, 混交种植模式中固氮植物可以将生物固定的氮转移给非固氮植物, 是满足非固氮植物氮需求的途径之一。明确固氮和非固氮植物间氮转移的影响因素有助于恢复退化生态系统, 构建稳定群落, 增加生态系统生产力。为了量化环境及生物等因素对氮转移的影响, 该研究采用文献调研法, 对118组氮转移比例(氮转移量占非固氮植物氮含量的比值, Ptransfer)文献和实验数据(包括21种固氮植物和23种非固氮植物)进行了线性混合模型分析。结果表明土壤pH是影响Ptransfer变化的最主要因素(解释量为44.04%), 其次为年平均温度(解释量为9.14%)以及固氮与非固氮植物生物量比值(解释量为2.95%), 而作为随机因素的固氮和非固氮植物物种差异的解释量为16.52%。此外, 碱性土壤中Ptransferr显著高于酸性土壤。在酸性土壤中, 年平均温度(解释量为12.49%)和土壤总氮含量(解释量为11.72%)是影响Ptransfer差异的主要因素, Ptransfer随着年平均温度和土壤总氮含量的增加而显著增加。而在碱性土壤中, Ptransfer差异主要受到固氮与非固氮植物生物量比值(解释量为13.29%)、年降水量(解释量为10.73%)和土壤总氮含量(解释量为9.33%)的调控。相对于酸性土壤, 碱性土壤能够显著增加固氮与非固氮植物生物量比值进而增加Ptransfer。同时, 在碱性土壤中Ptransfer与年降水量和土壤总氮含量呈显著正相关关系。这些结果对提高固氮和非固氮植物间的氮转移, 有效缓解土壤氮对非固氮植物生长的限制以及构建稳定群落具有重要意义。 相似文献
13.
To understand the composition and structure of nitrogen-fixing bacterial communities from the Sanjiangyuan Nature Reserve on the Tibetan Plateau, the molecular diversity of nifH genes from soil obtained at six sites was examined using a PCR-based cloning approach. Six samples were collected from different regions at an altitude of 3907-4824 m above sea level, and a principal component analysis (PCA) showed that they had different biogeochemical properties. A total of 446 clones and 162 unique RFLP patterns were found. PCA of the RFLP patterns and their biogeochemical parameters showed that the content of soil organic carbon (C), total nitrogen (N) and altitude were the most important factors affecting the nitrogen-fixing bacteria community. Fifty-nine nifH clones were sequenced and their nucleotide identity varied from 64% to 98%, subdivisible into four groups in our phylogenetic tree. Some of the clone sequences were related to nifH genes belonging to four phylogenetic subdivisions (alpha, beta, gamma and delta subclasses of the Proteobacteria), while most of the clones were closely related to the genes of the uncultured bacteria. The tree also showed that the sequence distributions were not clearly related to the sample sites. 相似文献
14.
[目的]香根草(Vetiver zizanioides)是一种多年生禾本科草本植物,具有极强的生态适应性和抗逆能力,可作饲料和水土保持用.通过研究香根草联合固氮菌多样性,为进一步研究和应用打下基础.[方法]采用无氮培养基,首次从香根草中分离到47株联合固氮菌,分别应用SDS-PAGE全细胞蛋白质电泳、DNA指纹图谱、唯一碳源和16S rDNA全序列测定等方法,进行聚类和多样性分析.[结果]SDS-PAGE、IS-PCR和Bio-BIQA碳源利用的聚类结果基本一致,将供试菌株分为6个类群和4个单菌株;16S rDNA序列测定表明,从香根草中分离的菌株包括了佛莱辛草螺菌(Herbaspirillum frisingense)、中型假食酸菌(Pseudacidovorax intermedius)、恶臭假单胞菌(Pseudomonas putida)、荧光假单胞菌(Pseudomonas fluorescens)、越南伯克氏菌(Burkholderia vietnamiensis)、阴沟肠杆菌(Enterobacter cloacae)、路德维希肠杆菌(Enterobacter ludwigii)和松江壳聚糖降解菌(Mitsuaria chitosanitabida)等不同菌种.[结论]香根草联合固氮菌具有较大的资源多样性,对固氮菌资源的扩展和将来牧草上的应用具有重要意义. 相似文献
15.
先锋牧草-香根草联合固氮菌多样性研究 总被引:1,自引:0,他引:1
摘要:【目的】香根草(Vetiver zizanioides)是一种多年生禾本科草本植物,具有极强的生态适应性和抗逆能力,可作饲料和水土保持用。通过研究香根草联合固氮菌多样性,为进一步研究和应用打下基础。【方法】采用无氮培养基,首次从香根草中分离到47株联合固氮菌,分别应用SDS-PAGE全细胞蛋白质电泳、DNA指纹图谱、唯一碳源和16S rDNA全序列测定等方法,进行聚类和多样性分析。【结果】SDS-PAGE、IS-PCR和Bio-BIQA碳源利用的聚类结果基本一致,将供试菌株分为6个类群和4个单菌株; 相似文献
16.
17.
Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated antarctic soils 总被引:1,自引:0,他引:1
Eckford R Cook FD Saul D Aislabie J Foght J 《Applied and environmental microbiology》2002,68(10):5181-5185
Five bacterial isolates enriched from fuel-contaminated Antarctic soils fixed nitrogen in the dark heterotrophically and nonsymbiotically. Two isolates utilized jet fuel vapors and volatile hydrocarbons for growth but not in N-deficient medium. Bacteria such as these may contribute to in situ biodegradation of hydrocarbons in Antarctic soils. 相似文献
18.
19.
Root-soil cores were collected from forage grasses growing in a subtropical region of Texas and tested for acetylene reduction activity. The population density of nitrogen-fixing bacteria was measured, using various media and incubation conditions. Bacteria were confirmed as nitrogen fixing, using the acetylene reduction assay, and were classified according to standard biochemical and cultural methods. The majority of the nitrogen-fixing bacteria isolated from roots were Enterobacter cloacae or Klebsiella pneumoniae. Root-associated, nitrogen-fixing bacteria were isolated from 21 of 24 root-soil cores. The population densities of nitrogen-fixing bacteria ranged from approximately 10 to 3 x 10 per g of root. Population density on roots was significantly correlated with the rate of acetylene reduction but the relationship was not linear. 相似文献
20.
Nitrogen and rhizosphere microorganism effects on nitrogen and carbon dynamics of Sitanion hystrix (early successional species), Stipa comata and Poa secundu which are (mid-successional species), and Agropyron spicatum (late successional species) were evaluated in a growth chamber study. Rhizosphere inocula resulted in increased nitrogen in both root and shoot tissue, and also of water-extractable carbon in the rhizosphere. Plant species, rhizosphere inocula and nitrogen level showed a three-way significant interaction for total and plant-available nitrogen. Rhizosphere microbe presence resulted in higher plant-available nitrogen in the rhizosphere of S. hystrix and less with A. spicatum, suggesting nitrogen immobilization with the later successional grass. Higher nitrogen resulted in decreased active bacteria in the rhizosphere of all plants tested, and decreased fungal hyphal lengths in the rhizosphere of the later successional P. secunda and A. spicutum. Exudate carbon in the rhizosphere of the late successional species A. spicatum, was more recalcitrant, which also may contribute to nitrogen immobilization. These differential responses of early- and late-successional grasses may be important factors contributing to plant succession. 相似文献