首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic epithelial morphogenesis, including hepatoblast migration and proliferation in the septum transversum, requires the interaction of hepatic epithelium with the embryonic sinusoidal wall. No factors that mediate this interaction have yet been identified. As the β-catenin pathway is active in hepatoblast proliferation, then Wnt ligands might activate the canonical Wnt pathway during liver development. Here, we investigated the role of Wnts in mediating epithelial vessel interactions in the developing chick liver. We found that Wnt9a was specifically expressed in both endothelial and stellate cells of the embryonic sinusoidal wall. Induced overexpression of Wnt9a resulted in hepatomegaly with hyperplasia of the hepatocellular cords, and in hyperproliferation of hepatocytes. Knockdown of Wnt9a caused a reduction in liver size, with hypoplasia of hepatocellular cord branching, and hypoproliferation of hepatoblasts, and also inhibited glycogen accumulation at later developmental stages. Wnt9a promoted in vivo stabilization of β-catenin through binding with Frizzled 4, 7, and 9, and activated TOPflash reporter expression in vitro via Frizzled 7 and 9. Our results demonstrate that Wnt9a from the embryonic sinusoidal wall is required for the proper morphogenesis of chick hepatocellular cords, proliferation of hepatoblasts/hepatocytes, and glycogen accumulation in hepatocytes. Wnt9a signaling appears to be mediated by an Fzd7/9-β-catenin pathway.  相似文献   

2.
3.
Saito Y  Kojima T  Takahashi N 《PloS one》2012,7(3):e32991
During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation.  相似文献   

4.
During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.  相似文献   

5.
6.
Aralia elata is an edible mountain vegetable. Angiogenesis, the formation of new blood vessels, is a process involving migration, proliferation and cell differentiation, as well as the formation of new capillary structures. Matrix metalloproteinases (MMPs) plays an important role in angiogenesis. The development of a functional vascular system requires a variety of growth factors, their receptors, and intracellular signals. This study examines the effects of water extracts from: (i)A. elata root bark (Aralia extracts); (ii) a combination of Aralia extracts and fibroblast growth factors (FGF-2) on cultured porcine coronary artery endothelial cells (PCAECs). Aralia extracts induced the migration of PCAECs, which was inhibited by MMPs inhibitors. Combining Aralia extracts and FGF-2 enhanced the migration and the secretion of MMP-2 and MMP-9 from PCAECs. We postulated that the Aralia extracts, which induced migrating activity in PCAECs, may be accomplished by increased secretion levels of MMP-2 and MMP-9.  相似文献   

7.
Hepatoblasts have the potential to differentiate into both hepatocytes and biliary epithelial cells through a differentiation program that has not been fully elucidated. With the aim to better define the mechanism of differentiation of hepatoblasts, we isolated hepatoblasts and established new culture systems. We isolated hepatoblasts from E12.5 fetal mouse liver by using E-cadherin. The E-cadherin+ cells expressed alpha-fetoprotein (AFP) and albumin (Alb) but not cytokeratin 19 (CK19). Transplantation of the E-cadherin+ cells into mice that had been subjected to liver injury or biliary epithelial injury led to differentiation of the cells into hepatocytes or biliary epithelial cells, respectively. In a low-cell-density culture system in the absence of additional growth factors, E-cadherin+ cells formed colonies of various sizes, largely comprising Alb-positive cells. Supplementation of the culture medium with hepatocyte growth factor and epidermal growth factor promoted proliferation of the cells. Thus the low-cell-density culture system should be useful to identify inductive factors that regulate the proliferation and differentiation of hepatoblasts. In a high-cell-density system in the presence of oncostatin M+dexamethasone, E14.5, but not E12.5, E-cadherin+ cells differentiated into mature hepatocytes, suggesting that unidentified factors are involved in hepatic maturation. Culture of E-cadherin+ cells derived from E12.5 or E14.5 liver under high-cell-density conditions should allow elucidation of the mechanism of hepatic differentiation in greater detail. These new culture systems should be of use to identify growth factors that induce hepatoblasts to proliferate or differentiate into hepatocytes and biliary epithelial cells.  相似文献   

8.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP-1, -2, and -9) and decreased tissue inhibitors of MMPs (TIMP-1 and -2) in a protein tyrosine kinase (PTK)-dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK-mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.  相似文献   

9.
Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism.  相似文献   

10.
Loo WT  Cheung MN  Chow LW 《Life sciences》2004,76(7):743-752
This article aims at investigating the effect of production of matrix metalloproteinases (MMP) in human breast cancer tissues by means of three dimensional culture system. Thirty-nine tumour samples were taken from breast cancer patients. The tumour blocks were cultured on sponge gel using the three dimensional culture system. Breast cancer cells began shedding into the culture medium after 24 hours of culture. The cells were stained with trypan blue dye to assess viability on days 2, 4, 6 and 8. The culture medium was collected at these time points and tested for matrix metalloproteinases (MMP) 1,2,3 and 9 activities. There was a progressive increase in migration of cancer cells into the gel and culture medium from day 2 to day 8 and the interval difference was statistically significant (F ratio=4.06; p=0.008). The levels of all the MMPs tested were also significantly raised (P<0.05 for all the MMPs tested). When the levels of MMPs were correlated with the metabolic activities in the gel, medium and tumour block, cells in block show no correlation whereas cells in gel correlated significantly with MMP-1 and MMP-3. Cancer cells in the culture medium correlated with MMP-9. In conclusion, there is a progressive migration of cancer cells outside the tumour block. The migration into the gel and culture medium is associated with progressive and differential production of MMPs. It is likely that the three dimensional culture model assists in the selection of different subpopulations of cancer cells with different invasion properties as exemplified by the differential production of MMP.  相似文献   

11.
Liver development is based on reciprocal interactions between ventral foregut endoderm and adjacent mesenchymal tissues. Targeted disruption of the LIM-homeobox gene Lhx2 has revealed that it is important for the expansion of the liver during embryonic development, whereas it appears not to be involved in the induction of hepatic fate. It is not known whether Lhx2 is expressed in the endodermal or mesenchymal portion of the liver, or if the cells normally expressing Lhx2 are absent or present in the liver of Lhx2(-/-) embryos. To address this we have analyzed gene expression from the Lhx2 locus during hepatic development in wild type and Lhx2(-/-) mice. Lhx2 is expressed in cells of the septum transversum mesenchyme adjacent to the liver bud from embryonic day 9. The hepatic cords subsequently migrate into and intermingle with the Lhx2+ cells of the septum transversum mesenchyme. Lhx2 expression is thereafter maintained in a subpopulation of mesenchymal cells in the liver until adult life. In adult liver the Lhx2+ mesenchymal cells co-express desmin, a marker associated with stellate cells. At embryonic day 10.5, cells expressing the mutant Lhx2 allel are present in Lhx2(-/-) livers, and expression of Hlx, hepatocyte growth factor, Hex and Prox1, genes known to be important in liver development, is independent of functional Lhx2 expression. Thus, Lhx2 is specifically expressed in the liver-associated septum transversum mesenchyme that subsequently becomes an integral part of the liver and the formation of these mesenchymal cells does not require functional Lhx2.  相似文献   

12.
The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non-proteolytic activities of MMPs are just beginning to be understood. Herein, we evaluated the role of proMMPs in cell migration. Employing a Transwell chamber migration assay, we demonstrated that transfection of COS-1 cells with various proMMP cDNAs resulted in enhancement of cell migration. Latent MMP-2 and MMP-9 enhanced cell migration to a greater extent than latent MMP-1, -3, -11 and -28. To examine if proteolytic activity is required for MMP-enhanced cell migration, three experimental approaches, including fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant MMP cDNAs, and addition of hydroxamic acid-derived MMP inhibitors, were employed. We demonstrated that the proteolytic activities of MMPs are not required for MMP-induced cell migration. To explore the mechanism underlying MMP-enhanced cell migration, structure-function relationship of MMP-9 on cell migration was evaluated. By using a domain swapping approach, we demonstrated that the hemopexin domain of proMMP-9 plays an important role in cell migration when examined by a transwell chamber assay and by a phagokinetic migration assay. TIMP-1, which interacts with the hemopexin domain of proMMP-9, inhibited cell migration, whereas TIMP-2 had no effect. Employing small molecular inhibitors, MAPK and PI3K pathways were found to be involved in MMP-9-mediated cell migration. In conclusion, we demonstrated that MMPs utilize a non-proteolytic mechanism to enhance epithelial cell migration. We propose that hemopexin homodimer formation is required for the full cell migratory function of proMMP-9.  相似文献   

13.
Dendritic cells migrate from the skin to the draining lymph nodes. They transport immunogenic MHC-peptide complexes, present them to Ag-specific T cells in the T areas, and thus generate immunity. Migrating dendritic cells encounter physical obstacles, such as basement membranes and collagen meshwork. Prior work has revealed that matrix metalloproteinase-9 (MMP-9) contributes to mouse Langerhans cell migration. In this study, we use mouse and human skin explant culture models to further study the role of MMPs in the migration and maturation of skin dendritic cells. We found that MMP-2 and MMP-9 are expressed on the surface of dendritic cells from the skin, but not from other sources. They are also expressed in migrating Langerhans cells in situ. The migration of both Langerhans cells and dermal dendritic cells is inhibited by a broad spectrum inhibitor of MMPs (BB-3103), by Abs to MMP-9 and -2, and by the natural tissue inhibitors of metalloproteinases (TIMP), TIMP-1 and TIMP-2. Inhibition by anti-MMP-2 and TIMP-2 define a functional role for MMP-2 in addition to the previously described function of MMP-9. The importance of MMP-9 was emphasized using MMP-9-deficient mice in which Langerhans cell migration from skin explants was strikingly reduced. However, MMP-9 was only required for Langerhans cell migration and not maturation, since nonmigrating Langerhans cells isolated from the epidermis matured normally with regard to morphology, phenotype, and T cell stimulatory function. These data underscore the importance of MMPs, and they may be of relevance for therapeutically regulating dendritic cell migration in clinical vaccination approaches.  相似文献   

14.
15.
In this study, we examined whether interleukin-18 (IL-18) affects natural killer (NK) cells' migration and matrix metalloproteinases (MMPs) production. We demonstrated that chemotaxis of human NK cells through basement membrane-like Matrigel was augmented by IL-18. As well, IL-18 stimulation induces the production of activated forms of matrix metalloproteinase-2 (MMP-2) as well as the production of pro-MMP-2 from NK cells. We also demonstrated that MT1-MMP expression on human NK cells, which is a major activator of MMP-2, was induced by IL-18 stimulation coordinated with MMP-2 activation. These data suggest that the MT1-MMP/MMP-2 system participates in the degradation of basement membrane components and thus contributes to NK cell migration.  相似文献   

16.
In this paper we show presents of viable population of hepatoblasts, endodermal blasts, endothelial and mesenchymal cells in the cryopreserved suspension cells of human fetal liver. Also we observed epithelial-mesenchymal transition of hepatoblasts in culture. We show that it's possible to apply the method of cryopreservation of hematopoietic cells of human fetal liver of the first gestation trimester for cryopreservation of parenchymal and stromal cells of fetal liver.  相似文献   

17.
Matrix metalloproteinases (MMPs) regulate matrix deposition in tissues. Collagens I, III, and IV are involved in early human liver development. To establish whether MMPs specific for these collagens participate in early human liver development, we localized immunohistochemically MMP-1 and MMP-13 (for collagens I and III) and MMP-2 and MMP-7 (for collagen IV) in the early human liver anlage [6th–10th gestational week (GW)]. MMP-1 was found from the 6th GW onward in hepatocytes and later also in outer limiting plate hepatocytes, early bile ducts, and periportal mesenchymal cells. In the 6th GW, MMP-2 was found only in microvascular endothelium. In the 7th GW, MMP-2 was also detected in hepatocytes. From the 9th GW onward, MMP-2 was detectable in all hepatocytes and erythropoietic, endothelial, and periportal mesenchymal cells. MMP-7 was present in the 6th GW in some hepatocytes and endothelial cells, but from the 7th GW onward, only in hematopoietic cells. MMP-13 was found exclusively in hematopoietic cells. This study has shown that production of MMP -1, MMP-2, MMP-7, and MMP-13 during human liver development already occurs from the 6th GW. At this time-point their substrates are only traces or are not yet present in the tissue. A possible role of MMPs in early liver development is discussed. Accepted: 1 July 1999  相似文献   

18.
Embryonic cells regulate the expression of matrix metalloproteinases (MMP) providing remodulation of extracellular matrix, which in turn provides the changes in cell adhesion and migration during the cell development and differentiation. In present work we studied the changes of gelatinases (MMP-2 and MMP-9) and collagenases (MMP-1 and MMP-8) activities in the process of cultivating the primary murine embryonic fibroblasts (MEF). Cultivation was continued for 6 passages, after that the culture died in time. According to gelatin and collagen zymography results, drastic changes of all MMPs activities occurred during the third passage of cell cultivation. The MMP-1 and MMP-9 activity appears in the middle of cultivation and then disappeared at the end. The most important event MEF cultivation is appearance and subsequent reservation of collagenase MMP-8 and active form of gelatinase MMP-2.  相似文献   

19.
The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway.  相似文献   

20.
Matrix metalloproteinases (MMPs) play a major role in tissue remodelling and repair in pathophysiological conditions, such as liver fibrosis and regeneration. Regulation of the MMPs produced by liver cells is important in maintaining cell-matrix ratio in liver, which is a major target site for hormones that mediate their intracellular effects through cAMP. The possibility of cAMP affecting the activity of MMPs and their endogenous inhibitors, tissue inhibitor of MMPs (TIMPs) was studied using isolated rat hepatocytes in culture. Zymographic analysis showed that treatment with hormones like epinephrine, thyroxine and dexamethasone and Bt2 cAMP increased 92 kDa MMP-9 activity. Bt2 cAMP caused upregulation of MMP-9 in a dose-dependent manner. The effect of hormones was less on MMP-2. ELISA using specific antibodies showed increase in levels of MMP-9 and TIMP-1 protein. Kinetic analysis of production of MMPs and TIMPs showed that the response to Bt2 cAMP was a delayed one, indicating its effect on de novo protein synthesis. These results suggest the possibility of cAMP dependent regulation of MMP-9 in the hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号