首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gram-negative bacteria have five major subcellular localization sites: the cytoplasm, the periplasm, the inner membrane, the outer membrane, and the extracellular space. The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. We present an approach to predict subcellular localization for Gram-negative bacteria. This method uses the support vector machines trained by multiple feature vectors based on n-peptide compositions. For a standard data set comprising 1443 proteins, the overall prediction accuracy reaches 89%, which, to the best of our knowledge, is the highest prediction rate ever reported. Our prediction is 14% higher than that of the recently developed multimodular PSORT-B. Because of its simplicity, this approach can be easily extended to other organisms and should be a useful tool for the high-throughput and large-scale analysis of proteomic and genomic data.  相似文献   

2.
Shi JY  Zhang SW  Pan Q  Cheng YM  Xie J 《Amino acids》2007,33(1):69-74
As more and more genomes have been discovered in recent years, there is an urgent need to develop a reliable method to predict the subcellular localization for the explosion of newly found proteins. However, many well-known prediction methods based on amino acid composition have problems utilizing the sequence-order information. Here, based on the concept of Chou's pseudo amino acid composition (PseAA), a new feature extraction method, the multi-scale energy (MSE) approach, is introduced to incorporate the sequence-order information. First, a protein sequence was mapped to a digital signal using the amino acid index. Then, by wavelet transform, the mapped signal was broken down into several scales in which the energy factors were calculated and further formed into an MSE feature vector. Following this, combining this MSE feature vector with amino acid composition (AA), we constructed a series of MSEPseAA feature vectors to represent the protein subcellular localization sequences. Finally, according to a new kind of normalization approach, the MSEPseAA feature vectors were normalized to form the improved MSEPseAA vectors, named as IEPseAA. Using the technique of IEPseAA, C-support vector machine (C-SVM) and three multi-class SVMs strategies, quite promising results were obtained, indicating that MSE is quite effective in reflecting the sequence-order effects and might become a useful tool for predicting the other attributes of proteins as well.  相似文献   

3.
Automated prediction of bacterial protein subcellular localization is an important tool for genome annotation and drug discovery. PSORT has been one of the most widely used computational methods for such bacterial protein analysis; however, it has not been updated since it was introduced in 1991. In addition, neither PSORT nor any of the other computational methods available make predictions for all five of the localization sites characteristic of Gram-negative bacteria. Here we present PSORT-B, an updated version of PSORT for Gram-negative bacteria, which is available as a web-based application at http://www.psort.org. PSORT-B examines a given protein sequence for amino acid composition, similarity to proteins of known localization, presence of a signal peptide, transmembrane alpha-helices and motifs corresponding to specific localizations. A probabilistic method integrates these analyses, returning a list of five possible localization sites with associated probability scores. PSORT-B, designed to favor high precision (specificity) over high recall (sensitivity), attained an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, using a dataset we developed of 1443 proteins of experimentally known localization. This dataset, the largest of its kind, is freely available, along with the PSORT-B source code (under GNU General Public License).  相似文献   

4.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

5.
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.  相似文献   

6.
As the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N-terminal, middle, and C-terminal. The N-terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS-PROT database. Through fivefold cross-validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N-terminal, middle, and C-terminal parts is helpful to predict the subcellular location.  相似文献   

7.
There are approximately 109 proteins in a cell. A hotspot in bioinformatics is how to identify a protein's subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the "leave-one-out" jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.  相似文献   

8.
蛋白质亚细胞定位预测对蛋白质的功能、相互作用及调控机制的研究具有重要意义。本文基于物化性质和结构性质对氨基酸的约化,描述序列局部和全局信息的"组成"、"转换"和"分布"特征,并利用氨基酸亲疏水性的数值统计特征,提出了一种新的蛋白质特征表示方法(NSBH)。分别使用三种分类器KNN、SVM及BP神经网络进行蛋白质亚细胞定位预测,比较了几种方法和特征融合方法的预测结果,显示融合特征表示及结合SVM分类器时能够达到更好的预测准确率。同时,还详细讨论了不同参数对实验结果的影响,具体的实验及比较结果显示了该方法的有效性。  相似文献   

9.
10.
Proteins are generally classified into the following 12 subcellular locations: 1) chloroplast, 2) cytoplasm, 3) cytoskeleton, 4) endoplasmic reticulum, 5) extracellular, 6) Golgi apparatus, 7) lysosome, 8) mitochondria, 9) nucleus, 10) peroxisome, 11) plasma membrane, and 12) vacuole. Because the function of a protein is closely correlated with its subcellular location, with the rapid increase in new protein sequences entering into databanks, it is vitally important for both basic research and pharmaceutical industry to establish a high throughput tool for predicting protein subcellular location. In this paper, a new concept, the so-called "functional domain composition" is introduced. Based on the novel concept, the representation for a protein can be defined as a vector in a high-dimensional space, where each of the clustered functional domains derived from the protein universe serves as a vector base. With such a novel representation for a protein, the support vector machine (SVM) algorithm is introduced for predicting protein subcellular location. High success rates are obtained by the self-consistency test, jackknife test, and independent dataset test, respectively. The current approach not only can play an important complementary role to the powerful covariant discriminant algorithm based on the pseudo amino acid composition representation (Chou, K. C. (2001) Proteins Struct. Funct. Genet. 43, 246-255; Correction (2001) Proteins Struct. Funct. Genet. 44, 60), but also may greatly stimulate the development of this area.  相似文献   

11.

Background  

Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated.  相似文献   

12.

Background  

Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies.  相似文献   

13.
Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   

14.
MOTIVATION: Structural genomics projects are beginning to produce protein structures with unknown function, therefore, accurate, automated predictors of protein function are required if all these structures are to be properly annotated in reasonable time. Identifying the interface between two interacting proteins provides important clues to the function of a protein and can reduce the search space required by docking algorithms to predict the structures of complexes. RESULTS: We have combined a support vector machine (SVM) approach with surface patch analysis to predict protein-protein binding sites. Using a leave-one-out cross-validation procedure, we were able to successfully predict the location of the binding site on 76% of our dataset made up of proteins with both transient and obligate interfaces. With heterogeneous cross-validation, where we trained the SVM on transient complexes to predict on obligate complexes (and vice versa), we still achieved comparable success rates to the leave-one-out cross-validation suggesting that sufficient properties are shared between transient and obligate interfaces. AVAILABILITY: A web application based on the method can be found at http://www.bioinformatics.leeds.ac.uk/ppi_pred. The dataset of 180 proteins used in this study is also available via the same web site. CONTACT: westhead@bmb.leeds.ac.uk SUPPLEMENTARY INFORMATION: http://www.bioinformatics.leeds.ac.uk/ppi-pred/supp-material.  相似文献   

15.
用离散增量结合支持向量机方法预测蛋白质亚细胞定位   总被引:3,自引:0,他引:3  
赵禹  赵巨东  姚龙 《生物信息学》2010,8(3):237-239,244
对未知蛋白的功能注释是蛋白质组学的主要目标。一个关键的注释是蛋白质亚细胞定位的预测。本文应用离散增量结合支持向量机(ID_SVM)的方法,对阳性革兰氏细菌蛋白的5类亚细胞定位点进行预测。在独立检验下,其总体预测成功率为89.66%。结果发现ID_SVM算法对预测的成功率有很大改进。  相似文献   

16.

Background  

Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab initio structure prediction and understanding protein folding. In spite of steady progress over the past decade, contact prediction remains still largely unsolved.  相似文献   

17.
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.  相似文献   

18.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

19.
The function of a protein is intimately tied to its subcellular localization. Although localizations have been measured for many yeast proteins through systematic GFP fusions, similar studies in other branches of life are still forthcoming. In the interim, various machine-learning methods have been proposed to predict localization using physical characteristics of a protein, such as amino acid content, hydrophobicity, side-chain mass and domain composition. However, there has been comparatively little work on predicting localization using protein networks. Here, we predict protein localizations by integrating an extensive set of protein physical characteristics over a protein's extended protein-protein interaction neighborhood, using a classification framework called 'Divide and Conquer k-Nearest Neighbors' (DC-kNN). These predictions achieve significantly higher accuracy than two well-known methods for predicting protein localization in yeast. Using new GFP imaging experiments, we show that the network-based approach can extend and revise previous annotations made from high-throughput studies. Finally, we show that our approach remains highly predictive in higher eukaryotes such as fly and human, in which most localizations are unknown and the protein network coverage is less substantial.  相似文献   

20.
Kim H  Park H 《Protein engineering》2003,16(8):553-560
The prediction of protein secondary structure is an important step in the prediction of protein tertiary structure. A new protein secondary structure prediction method, SVMpsi, was developed to improve the current level of prediction by incorporating new tertiary classifiers and their jury decision system, and the PSI-BLAST PSSM profiles. Additionally, efficient methods to handle unbalanced data and a new optimization strategy for maximizing the Q(3) measure were developed. The SVMpsi produces the highest published Q(3) and SOV94 scores on both the RS126 and CB513 data sets to date. For a new KP480 set, the prediction accuracy of SVMpsi was Q(3) = 78.5% and SOV94 = 82.8%. Moreover, the blind test results for 136 non-redundant protein sequences which do not contain homologues of training data sets were Q(3) = 77.2% and SOV94 = 81.8%. The SVMpsi results in CASP5 illustrate that it is another competitive method to predict protein secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号