首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Automated prediction of bacterial protein subcellular localization is an important tool for genome annotation and drug discovery. PSORT has been one of the most widely used computational methods for such bacterial protein analysis; however, it has not been updated since it was introduced in 1991. In addition, neither PSORT nor any of the other computational methods available make predictions for all five of the localization sites characteristic of Gram-negative bacteria. Here we present PSORT-B, an updated version of PSORT for Gram-negative bacteria, which is available as a web-based application at http://www.psort.org. PSORT-B examines a given protein sequence for amino acid composition, similarity to proteins of known localization, presence of a signal peptide, transmembrane alpha-helices and motifs corresponding to specific localizations. A probabilistic method integrates these analyses, returning a list of five possible localization sites with associated probability scores. PSORT-B, designed to favor high precision (specificity) over high recall (sensitivity), attained an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, using a dataset we developed of 1443 proteins of experimentally known localization. This dataset, the largest of its kind, is freely available, along with the PSORT-B source code (under GNU General Public License).  相似文献   

2.
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.  相似文献   

3.
There are approximately 109 proteins in a cell. A hotspot in bioinformatics is how to identify a protein's subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the "leave-one-out" jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.  相似文献   

4.
Proteins are generally classified into the following 12 subcellular locations: 1) chloroplast, 2) cytoplasm, 3) cytoskeleton, 4) endoplasmic reticulum, 5) extracellular, 6) Golgi apparatus, 7) lysosome, 8) mitochondria, 9) nucleus, 10) peroxisome, 11) plasma membrane, and 12) vacuole. Because the function of a protein is closely correlated with its subcellular location, with the rapid increase in new protein sequences entering into databanks, it is vitally important for both basic research and pharmaceutical industry to establish a high throughput tool for predicting protein subcellular location. In this paper, a new concept, the so-called "functional domain composition" is introduced. Based on the novel concept, the representation for a protein can be defined as a vector in a high-dimensional space, where each of the clustered functional domains derived from the protein universe serves as a vector base. With such a novel representation for a protein, the support vector machine (SVM) algorithm is introduced for predicting protein subcellular location. High success rates are obtained by the self-consistency test, jackknife test, and independent dataset test, respectively. The current approach not only can play an important complementary role to the powerful covariant discriminant algorithm based on the pseudo amino acid composition representation (Chou, K. C. (2001) Proteins Struct. Funct. Genet. 43, 246-255; Correction (2001) Proteins Struct. Funct. Genet. 44, 60), but also may greatly stimulate the development of this area.  相似文献   

5.

Background  

Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated.  相似文献   

6.
7.

Background  

Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies.  相似文献   

8.
MOTIVATION: Structural genomics projects are beginning to produce protein structures with unknown function, therefore, accurate, automated predictors of protein function are required if all these structures are to be properly annotated in reasonable time. Identifying the interface between two interacting proteins provides important clues to the function of a protein and can reduce the search space required by docking algorithms to predict the structures of complexes. RESULTS: We have combined a support vector machine (SVM) approach with surface patch analysis to predict protein-protein binding sites. Using a leave-one-out cross-validation procedure, we were able to successfully predict the location of the binding site on 76% of our dataset made up of proteins with both transient and obligate interfaces. With heterogeneous cross-validation, where we trained the SVM on transient complexes to predict on obligate complexes (and vice versa), we still achieved comparable success rates to the leave-one-out cross-validation suggesting that sufficient properties are shared between transient and obligate interfaces. AVAILABILITY: A web application based on the method can be found at http://www.bioinformatics.leeds.ac.uk/ppi_pred. The dataset of 180 proteins used in this study is also available via the same web site. CONTACT: westhead@bmb.leeds.ac.uk SUPPLEMENTARY INFORMATION: http://www.bioinformatics.leeds.ac.uk/ppi-pred/supp-material.  相似文献   

9.
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.  相似文献   

10.
用离散增量结合支持向量机方法预测蛋白质亚细胞定位   总被引:3,自引:0,他引:3  
赵禹  赵巨东  姚龙 《生物信息学》2010,8(3):237-239,244
对未知蛋白的功能注释是蛋白质组学的主要目标。一个关键的注释是蛋白质亚细胞定位的预测。本文应用离散增量结合支持向量机(ID_SVM)的方法,对阳性革兰氏细菌蛋白的5类亚细胞定位点进行预测。在独立检验下,其总体预测成功率为89.66%。结果发现ID_SVM算法对预测的成功率有很大改进。  相似文献   

11.

Background  

Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab initio structure prediction and understanding protein folding. In spite of steady progress over the past decade, contact prediction remains still largely unsolved.  相似文献   

12.
Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   

13.
Kim H  Park H 《Protein engineering》2003,16(8):553-560
The prediction of protein secondary structure is an important step in the prediction of protein tertiary structure. A new protein secondary structure prediction method, SVMpsi, was developed to improve the current level of prediction by incorporating new tertiary classifiers and their jury decision system, and the PSI-BLAST PSSM profiles. Additionally, efficient methods to handle unbalanced data and a new optimization strategy for maximizing the Q(3) measure were developed. The SVMpsi produces the highest published Q(3) and SOV94 scores on both the RS126 and CB513 data sets to date. For a new KP480 set, the prediction accuracy of SVMpsi was Q(3) = 78.5% and SOV94 = 82.8%. Moreover, the blind test results for 136 non-redundant protein sequences which do not contain homologues of training data sets were Q(3) = 77.2% and SOV94 = 81.8%. The SVMpsi results in CASP5 illustrate that it is another competitive method to predict protein secondary structure.  相似文献   

14.
Application of support vector machines for T-cell epitopes prediction   总被引:5,自引:0,他引:5  
MOTIVATION: The T-cell receptor, a major histocompatibility complex (MHC) molecule, and a bound antigenic peptide, play major roles in the process of antigen-specific T-cell activation. T-cell recognition was long considered exquisitely specific. Recent data also indicate that it is highly flexible, and one receptor may recognize thousands of different peptides. Deciphering the patterns of peptides that elicit a MHC restricted T-cell response is critical for vaccine development. RESULTS: For the first time we develop a support vector machine (SVM) for T-cell epitope prediction with an MHC type I restricted T-cell clone. Using cross-validation, we demonstrate that SVMs can be trained on relatively small data sets to provide prediction more accurate than those based on previously published methods or on MHC binding. SUPPLEMENTARY INFORMATION: Data for 203 synthesized peptides is available at http://linus.nci.nih.gov/Data/LAU203_Peptide.pdf  相似文献   

15.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

16.
Conotoxins are disulfide rich small peptides that target a broad spectrum of ion-channels and neuronal receptors. They offer promising avenues in the treatment of chronic pain, epilepsy and cardiovascular diseases. Assignment of newly sequenced mature conotoxins into appropriate superfamilies using a computational approach could provide valuable preliminary information on the biological and pharmacological functions of the toxins. However, creation of protein sequence patterns for the reliable identification and classification of new conotoxin sequences may not be effective due to the hypervariability of mature toxins. With the aim of formulating an in silico approach for the classification of conotoxins into superfamilies, we have incorporated the concept of pseudo-amino acid composition to represent a peptide in a mathematical framework that includes the sequence-order effect along with conventional amino acid composition. The polarity index attribute, which encodes information such as residue surface buriability, polarity, and hydropathy, was used to store the sequence-order effect. Several methods like BLAST, ISort (Intimate Sorting) predictor, least Hamming distance algorithm, least Euclidean distance algorithm and multi-class support vector machines (SVMs), were explored for superfamily identification. The SVMs outperform other methods providing an overall accuracy of 88.1% for all correct predictions with generalized squared correlation of 0.75 using jackknife cross-validation test for A, M, O and T superfamilies and a negative set consisting of short cysteine rich sequences from different eukaryotes having diverse functions. The computed sensitivity and specificity for the superfamilies were found to be in the range of 84.0-94.1% and 80.0-95.5%, respectively, attesting to the efficacy of multi-class SVMs for the successful in silico classification of the conotoxins into their superfamilies.  相似文献   

17.

Background  

Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C β atoms in other residues within a sphere around the C β atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence.  相似文献   

18.
The function of a protein is intimately tied to its subcellular localization. Although localizations have been measured for many yeast proteins through systematic GFP fusions, similar studies in other branches of life are still forthcoming. In the interim, various machine-learning methods have been proposed to predict localization using physical characteristics of a protein, such as amino acid content, hydrophobicity, side-chain mass and domain composition. However, there has been comparatively little work on predicting localization using protein networks. Here, we predict protein localizations by integrating an extensive set of protein physical characteristics over a protein's extended protein-protein interaction neighborhood, using a classification framework called 'Divide and Conquer k-Nearest Neighbors' (DC-kNN). These predictions achieve significantly higher accuracy than two well-known methods for predicting protein localization in yeast. Using new GFP imaging experiments, we show that the network-based approach can extend and revise previous annotations made from high-throughput studies. Finally, we show that our approach remains highly predictive in higher eukaryotes such as fly and human, in which most localizations are unknown and the protein network coverage is less substantial.  相似文献   

19.

Background  

This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1) feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE), and (2) AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions.  相似文献   

20.
In this study, an attempt has been made to predict the major functions of gramnegative bacterial proteins from their amino acid sequences. The dataset used for training and testing consists of 670 non-redundant gram-negative bacterial proteins (255 of cellular process, 60 of information molecules, 285 of metabolism, and 70 of virulence factors). First we developed an SVM-based method using amino acid and dipeptide composition and achieved the overall accuracy of 52.39% and 47.01%, respectively. We introduced a new concept for the classification of proteins based on tetrapeptides, in which we identified the unique tetrapeptides significantly found in a class of proteins. These tetrapeptides were used as the input feature for predicting the function of a protein and achieved the overall accuracy of 68.66%. We also developed a hybrid method in which the tetrapeptide information was used with amino acid composition and achieved the overall accuracy of 70.75%. A five-fold cross validation was used to evaluate the performance of these methods. The web server VICMpred has been developed for predicting the function of gram-negative bacterial proteins (http://www.imtech.res.in/raghava/vicmpred/).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号