首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Conservation of gene order in prokaryotes has become important in predicting protein function because, over the evolutionary timescale, genomes are shuffled so that local gene-order conservation reflects the functional constraints within the protein. Here, we compare closely related genomes to identify the rate with which gene order is disrupted and to infer the genes involved in the genome rearrangement.  相似文献   

3.

Background

Metagenomics has a great potential to discover previously unattainable information about microbial communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree.

Results

We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction (TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of microbial structure. Compared with other available methods designed for estimating taxonomic composition at a relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn’s disease dataset. Our results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the study of oral cavity and the Crohn’s disease.

Conclusions

By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a metagenomic sample.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-242) contains supplementary material, which is available to authorized users.  相似文献   

4.
The rapid progress in sequencing large quantities of DNA will provide an increasing number of complete genome sequences of closely related bacterial species as well as of pairs of isolates from the same species with different features, such as a pathogenic and an apathogenic representative. This opens the way to apply subtractive comparative analysis as a tool to select from the large pool of all bacterial genes a relatively small set of genes that can be correlated with the expression of a certain phenotype. These selected genes can then be the target for further functional analyses.  相似文献   

5.
Previously, we discovered multiple direct repeats of geminivirus-related DNA (GRD) sequences clustered at a single chromosomal position in Nicotiana tabacum (tobacco). Here we show that, in addition to tobacco, multiple copies of these elements occur in the genomes of three related Nicotiana species, all in the section Tomentosae: N. tomentosiformis, N. tomentosa and N. kawakamii, but not in 9 other more distantly related Nicotiana species, nor in various other solanaceous and non-solanaecous plants. DNA sequence analysis of 18 GRD copies reveal 4 distinct, but highly related, sub-families: GRD5, GRD3 and GRD53 in tobacco; GRD5 in N. tomentosiformis and N. kawakamii; and GRD2 in N. tomentosa. In addition to novel sequences, all elements share significant but varying lengths of DNA sequence similarity with the geminiviral replication origin plus the adjacent rep gene. There is extended sequence similarity to REP protein at the deduced amino acid sequence level, including motifs associated with other rolling circle replication proteins. Our data suggest that all GRD elements descend from a unique geminiviral integration event, most likely in a common ancestor of these Tomentosae species.  相似文献   

6.
About 63 species of Dendrobium are identified in China, making the identification of the origin of a particular Dendrobium species on the consumer market very difficult. We report evaluation of multiple species-specific probes screened from genomic DNA for closely related Dendrobium species identification, based on DNA array hybridization. Fourteen species-specific probes were screened from five closely related Dendrobium species, D. aurantiacum Kerr, D. officinale Kimura et Migo, D. nobile Lindl., D. chrysotoxum Lindl. and D. fimbriatum Hook., based on the SSH-Array technology we developed. Various commercial Dendrobium samples and unrelated samples were definitely identified. The specificity and accuracy of the multiple species-specific probes for species identification was assessed by identifying various commercial Dendrobium samples (Herba Dendrobii). Hybridization patterns of these multiple probes on digested genomic DNAs of Dendrobium species indicated that there are distinct polymorphic sequence fragment in the higher eukaryotes. This is the first report on detection and utilization of multiple species-specific probes of Dendrobium in whole genomic DNA, and this could be useful tools not only for a new technical platform for the closely related species identification but also for epidemiological studies on higher eukaryotes.  相似文献   

7.
In spite of the large number of studies on genome size, studies comparing genome size and growth‐related traits across a wider range of species from the same habitat, taking into account species phylogeny, are largely missing. I estimated the relationship between genome size and different seed and seedling traits in perennial herbs occurring in dry calcareous grasslands in northern Bohemia, Czech Republic. There was no relationship between genome size and plant traits in simple regression analyses, but several strong relationships emerged in analyses based on pairwise phylogenetically independent contrasts. There was a significant relationship between monoploid genome size and production of above‐ground biomass, seedling establishment success and seed weight and between holoploid genome size and seed dormancy. Because the results are based on phylogenetically independent contrasts over a range of species from the same type of habitat, they allow me to conclude that these patterns were not because of species group or habitat type, but really show a correlation with genome size. In contrast to previous studies, I found a higher number of relationships with monoploid than with holoploid genome size. This may be because the traits observed in this study are directly related to plant growth and thus to life‐cycle time, which is determined by monoploid genome size. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 290–298.  相似文献   

8.
Smukowski CS  Noor MA 《Heredity》2011,107(6):496-508
Despite their importance to successful meiosis and various evolutionary processes, meiotic recombination rates sometimes vary within species or between closely related species. For example, humans and chimpanzees share virtually no recombination hotspot locations in the surveyed portion of the genomes. However, conservation of recombination rates between closely related species has also been documented, raising an apparent contradiction. Here, we evaluate how and why conflicting patterns of recombination rate conservation and divergence may be observed, with particular emphasis on features that affect recombination, and the scale and method with which recombination is surveyed. Additionally, we review recent studies identifying features influencing fine-scale and broad-scale recombination patterns and informing how quickly recombination rates evolve, how changes in recombination impact selection and evolution in natural populations, and more broadly, which forces influence genome evolution.  相似文献   

9.
Hu X  Fan W  Han B  Liu H  Zheng D  Li Q  Dong W  Yan J  Gao M  Berry C  Yuan Z 《Journal of bacteriology》2008,190(8):2892-2902
Bacillus sphaericus strain C3-41 is an aerobic, mesophilic, spore-forming bacterium that has been used with great success in mosquito control programs worldwide. Genome sequencing revealed that the complete genome of this entomopathogenic bacterium is composed of a chromosomal replicon of 4,639,821 bp and a plasmid replicon of 177,642 bp, containing 4,786 and 186 potential protein-coding sequences, respectively. Comparison of the genome with other published sequences indicated that the B. sphaericus C3-41 chromosome is most similar to that of Bacillus sp. strain NRRL B-14905, a marine species that, like B. sphaericus, is unable to metabolize polysaccharides. The lack of key enzymes and sugar transport systems in the two bacteria appears to be the main reason for this inability, and the abundance of proteolytic enzymes and transport systems may endow these bacteria with exclusive metabolic pathways for a wide variety of organic compounds and amino acids. The genes shared between B. sphaericus C3-41 and Bacillus sp. strain NRRL B-14905, including mobile genetic elements, membrane-associated proteins, and transport systems, demonstrated that these two species are a biologically and phylogenetically divergent group. Knowledge of the genome sequence of B. sphaericus C3-41 thus increases our understanding of the bacilli and may also offer prospects for future genetic improvement of this important biological control agent.  相似文献   

10.
Botina SG  Sukhodolets VV 《Genetika》2006,42(3):325-330
Sequencing of the 16S rRNA genes from enterococcal strains used as starters suggested the existence of specialized taxa of lactic acid enterococci within the species Enterococcus durans and E. faecium and a new species, E. lactis. Comparisons showed that the 16S rRNA genes of closely related species have the same sets of variable positions with different combinations of nucleotides. The presence of identical combinations of nucleotide substitutions in different species was assumed to result from a transfer of genetic information via gene conversion between different rRNA operons. Such events were presumably associated with speciation in bacteria.  相似文献   

11.
12.

Background

Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature.

Results

We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs.

Conclusions

Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae.  相似文献   

13.
14.
Fast algorithms for large-scale genome alignment and comparison   总被引:30,自引:5,他引:30       下载免费PDF全文
We describe a suffix-tree algorithm that can align the entire genome sequences of eukaryotic and prokaryotic organisms with minimal use of computer time and memory. The new system, MUMmer 2, runs three times faster while using one-third as much memory as the original MUMmer system. It has been used successfully to align the entire human and mouse genomes to each other, and to align numerous smaller eukaryotic and prokaryotic genomes. A new module permits the alignment of multiple DNA sequence fragments, which has proven valuable in the comparison of incomplete genome sequences. We also describe a method to align more distantly related genomes by detecting protein sequence homology. This extension to MUMmer aligns two genomes after translating the sequence in all six reading frames, extracts all matching protein sequences and then clusters together matches. This method has been applied to both incomplete and complete genome sequences in order to detect regions of conserved synteny, in which multiple proteins from one organism are found in the same order and orientation in another. The system code is being made freely available by the authors.  相似文献   

15.
Inversions in evolution of man and closely related species   总被引:1,自引:0,他引:1  
By the comparative study of the karyotypes of many Primates, 35 inversions (25 peri- and 10 paracentric) having accumulated during evolution of species related to man were reconstructed. Some of them originated human chromosomes from more ancestral chromosomes still present in other primate species. Their detection in man would indicate the occurrence of reverse mutations. Other inversions occurred in ancestral chromosomes identical to those of man, and originated chromosomes of other Primates species. Their detection in man would indicate the occurrence of a convergent mutation. It is shown that such reverse and convergent mutations do occur. They are too frequently observed than by mere chance among patients ascertained in human cytogenetic laboratories. Their excess is still larger among radiation induced inversions in human cells. This demonstrates the nonrandom occurrence of inversions. In addition, it is concluded that inversions which have accumulated during evolution are more representative of mutagenesis than those detected in human cytogenetic laboratories.  相似文献   

16.
Models of coexistence often assume that competitive exclusion takes place at fine scale, but that disturbances (non-equilibrium models) or heterogeneity (spatial models) are necessary for long-term coexistence. As an alternative, very slow exclusion among competitively equivalent species has been proposed, but questioned on the ground that in the long run even the smallest difference in competitive ability will express itself in the loss of species. In this paper we demonstrate long-term coexistence among closely-related mire plant species (notablySphagnum mosses). In any bog in the boreal region, most species that can tolerate the nutrient-poor, acidic and partly anaerobic conditions are present. Thus, the ratio between the actual and regional species pool is 1 (or very close to 1), and selection of species from the regional pool seems hardly affected by interspecific competition or dispersal limitation.  相似文献   

17.
Chen H  Green RE  Pääbo S  Slatkin M 《Genetics》2007,177(1):387-398
We develop the theory for computing the joint frequency spectra of alleles in two closely related species. We allow for arbitrary population growth in both species after they had a common ancestor. We focus on the case in which a single chromosome is sequenced from one of the species. We use classical diffusion theory to show that, if the ancestral species was at equilibrium under mutation and drift and a chromosome from one of the descendant species carries the derived allele, the frequency spectrum in the other species is uniform, independently of the demographic history of both species. We also predict the expected densities of segregating and fixed sites when the chromosome from the other species carries the ancestral allele. We compare the predictions of our model with the site-frequency spectra of SNPs in the four HapMap populations of humans when the nucleotide present in the Neanderthal DNA sequence is ancestral or derived, using the chimp genome as the outgroup.  相似文献   

18.
19.
The complete mitochondrial genome of Penicillium digitatum (Pers.:Fr) Sacc is reported, the first time in a phytopathogenic Penicillium species. Comparative analysis revealed its close relationship to mitochondrial genomes of other Penicillium and Aspergillus species, both in gene content and in arrangement. The intron content of protein coding genes revealed several differences. The different exon-intron organization of Cytochrome Oxidase Subunit 1 genes indicated their common origin before the divergence of Penicillium and Aspergillus, and that, largely, their introns were transmitted vertically.  相似文献   

20.
Isozymes, vegetative and reproductive morphology, seasonality, vertical and geographic distributions and chromosomes were compared for six pairs of putative sibling species of Porphyra (P. abbottae/P. torta, P. fallax subsp. fallax/P. fallax subsp. conwayae, P. amplissima/P. cuneiformis, P. fucicola/P. leucostica, P. miniata/P. variegata, P. umbilicalis/P. umbilicalis) and among five species in a complex (P. brumalis, P. kurogii, P. linearis, P. pseudolinearis, and P. purpurea.) Geographic distribution and zymograms for certain proteins showed the greatest change between species pairs: only one pair of species had identical distributions, and most species pairs were disjunct; every species had a different allozyme for GOT-1, whereas all species had apparently identical proteins for phycoerythrin. Seasonality and habitat exhibited moderate differentiation: Northeast Pacific sibling species were characterized by a high intertidal winter species pairing with a mid intertidal spring species, whereas all but one of the other species pairs exhibited nearly identical vertical distributions and seasonalities. There were few changes in morphology: most species pairs had essentially identical morphologies and coloration and the same arrangement of reproductive cells. Chromosome numbers and karyotypes were identical for species pairs and in the species complex. These results provide evidence for different rates of evolution of different characters in the genus Porphyra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号