共查询到20条相似文献,搜索用时 0 毫秒
1.
Solubilization and reconstitution of the formylmethionylleucylphenylalanine receptor coupled to guanine nucleotide regulatory protein 总被引:1,自引:0,他引:1
We describe the solubilization, resolution, and reconstitution of the formylmethionylleucylphenylalanine (fMet-Leu-Phe) receptor and guanine nucleotide regulatory proteins (G-proteins). The receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Guanine nucleotides decreased the number of high-affinity binding sites and accelerated the rate of dissociation of the receptor-ligand complex, suggesting that the solubilized receptor remained coupled to endogenous G-proteins. The solubilized receptor was resolved from endogenous G-proteins by fractionation on a wheat germ agglutinin (WGA)-Sepharose 4B column. High-affinity [3H]fMet-Leu-Phe binding to the WGA-purified receptor was diminished and exhibited reduced guanine nucleotide sensitivity. High-affinity [3H]fMet-Leu-Phe binding and guanine nucleotide sensitivity were reconstituted upon the addition of purified brain G-proteins. Similar results were obtained when the receptor was reconstituted with brain G-proteins into phospholipid vesicles by gel filtration chromatography. In addition, we also demonstrated fMet-Leu-Phe-dependent GTP hydrolysis in the reconstituted vesicles. The results of this work indicate that coupling of the fMet-Leu-Phe receptor to G-proteins converts the receptor to a high-affinity binding state and that agonist produces activation of G-proteins. The resolution and functional reconstitution of this receptor should provide an important step toward the elucidation of the molecular mechanism of the fMet-Leu-Phe transduction system in neutrophils. 相似文献
2.
The role of lipids in the function of membrane receptors for hormones and neurotransmitters is still obscure. To gain information on this subject, a delipidated receptor preparation was developed. The beta-adrenergic receptor from turkey erythrocyte membranes was solubilized in deoxycholate and was freed extensively of phospholipids and of cholesterol by gel filtration. The delipidated preparation, after removal of the detergent, showed little, if any, ligand binding to the receptor as measured with the beta-adrenergic antagonist [125I] iodocyanopindolol. Readdition of soybean lipids restored specific radioligand binding. The lipid reconstituted receptor demonstrated agonist and antagonist binding affinities which were not very different from those of the native receptor. The receptor also retained its ability to function, as demonstrated by transfer to a foreign adenylate cyclase system. The delipidated receptor preparation lent itself conveniently to study the requirement for specific lipids in restoration of agonist and antagonist binding. Phosphatidylethanolamine restored maximal binding. Acidic phospholipids and sphingomyelin were inefficient in reconstitution of the receptor. The effect of cholesterol addition was also investigated. Binding was dramatically increased when a cholesterol ester was added in mixture with the acidic phospholipids, cardiolipin or phosphatidylinositol. Further studies unexpectedly revealed that reconstitution of the delipidated receptor is not exclusively dependent on the addition of a phospholipid; a mixture of 1-monooleylglycerol with cholesteryl hemisuccinate restored binding as efficiently as phosphatidylethanolamine. The presently described preparation should be useful in elucidating the part played by lipids in the action of the receptor in the adenylate cyclase system. 相似文献
3.
Structural studies of Fc receptors. IV. Structure required for phospholipids for reconstitution of the delipidated Fc receptor of macrophages 总被引:1,自引:0,他引:1
To analyze the interaction of the macrophage Fc receptor with phospholipids, we established an experimental system for delipidation of Fc receptor fraction and reconstitution of the Fc receptor activity in phospholipid vesicles. The separation of FcR from membrane phospholipids was achieved by ion exchange chromatography on DEAE-cellulose of the anionic detergent-lysate of the crude membrane fraction of guinea pig macrophages in the presence of detergent. The separation was based on the difference in charge between the complex of FcR and the anionic detergent and that of phospholipids and the detergent. The FcR fraction free of phospholipids showed no FcR activity as assessed in terms of its ability to inhibit the binding of labeled soluble immune complex of IgG2 antibody to macrophages, but the same fraction showed a definite activity when associated with phospholipids. This fraction was shown to contain a component of 44,000 daltons that is susceptible to surface-labeling and binds to IgG2-Sepharose in the affinity chromatography, indicating this component to be the Fc receptor. Reconstitution experiments with this fraction showed that phosphatidylcholine is the most effective phospholipid to reconstitute the FcR activity among those tested. Phosphatidylserine, phosphatidylinositol, and sphingomyelin were ineffective, while phosphatidylethanolamine showed a moderate effect. The inactivating effect of phospholipase C treatment on the Fc receptor activity of the membrane was shown to be due to the cleavage of phospholipids in the membrane but not due to modification of the Fc receptor molecule itself. 相似文献
4.
The apolipoproteins of insect lipophorin were dissociated in guanidinium chloride and isolated by gel permeation chromatography. Over 98% of the total lipid in lipophorin was associated with apolipophorin I (apoLp-I), thus suggesting this apolipoprotein to be the lipid binding component of the particle. ApoLp-I was delipidated with ethanol/ether and solubilized in buffer that contained radioactive lysophosphatidylcholine ([3H]LPC) above the critical micellar concentration. Sonic irradiation of radioactive phosphatidylcholine ([14C]PC) with [3H]LPC-solubilized apoLp-I at a molar ratio of 318 resulted in reconstituted lipophorin (RLp-I). [3H]LPC was bound to fatty acid free bovine serum albumin and was separated from RLp-I by density gradient ultracentrifugation and gel permeation chromatography. Negatively stained RLp-I particles were quasispherical with an average radium of 55 A, and their overall morphology and secondary structure were similar to those of native hemolymph lipophorin. The RLp-I particle had a rho = 1.137 g/mL, a Mr approximately 5.2 X 10(5), and a [14C]PC:apoLp-I molar ratio of 308. From the compositional analysis, molecular size, trypsinization, and lipolysis with phospholipase A2, we concluded that each RLp-I particle contained one molecule of apoLp-I and a monomolecular layer of [14C]PC. When injected into the hemolymph of adult moths in vivo, RLp-I was loaded with lipid, as judged by a decrease in its density both in the presence and in the absence of adipokinetic hormone. The similarities in morphology and immunology of RLp-I and native lipophorin, together with the ability of RLp-I to load lipid, suggest that reconstituted lipophorins may serve as models to probe lipophorin structure and function. 相似文献
5.
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport. 相似文献
6.
J Kirilovsky S Eimerl S Steiner-Mordoch M Schramm 《European journal of biochemistry》1987,166(1):221-228
Detergent-solubilized preparations of the beta-adrenergic receptor (R) and of the guanyl nucleotide binding proteins (Gs) were extensively treated to remove phospholipids and cholesterol. Reconstitution of an R-Gs system was subsequently performed in the presence of a mixture of natural phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine or the synthetic dioleoyl derivatives of the same phospholipids. In both cases, an additional lipid was required for the agonist-dependent activation of Gs. The requirement could be fulfilled by alpha-tocopherol, or by unsaturated fatty acids such as oleic acid. Inclusion of this non-phosphorylated lipid in the reconstituted system enhanced the isoproterenol-dependent activation of Gs by guanosine 5'-O-[gamma-thio]triphosphate 16-33-fold. The rate of activation was largely dependent on the addition of the agonist. Efficient functional reconstitution of R-Gs was thus achieved in a totally defined lipid system. Additional studies of the reconstituted system and of the native membrane led to the notion that the non-phosphorylated lipid plays a role in the function of the hormone-R complex. 相似文献
7.
Lipid requirements for Rhodopsin regenerability 总被引:14,自引:0,他引:14
8.
9.
Interaction of the beta-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function 总被引:2,自引:0,他引:2
Preparations of beta-adrenergic receptor and Gs from turkey erythrocytes were delipidated by previously developed procedures. Three synthetic phospholipids, dioleoylglycerophosphoethanolamine, dioleoylglycerophosphocholine and dioleoylglycerophosphoserine plus an unphosphorylated lipid, were all required to restore receptor-mediated activation of Gs by GTP[gamma S]. The same lipids were necessary for the reconstitution of the isoproterenol-enhanced GTPase. The requirement for the unphosphorylated lipid could be fulfilled by 1-mono-oleoyl glycerol, alpha-tocopherol or oleic acid. Cholesterol hemisuccinate further enhanced the receptor-mediated activity of the relipidated system when present in addition to the lipids specified above. Cholesterol hemisuccinate had no effect on the basal rate of Gs activation and depressed the basal GTPase. It is therefore suggested that cholesterol hemisuccinate affects the receptor or the coupling of the receptor to Gs. In the system relipidated with the three dioleoyl phospholipids, plus alpha-tocopherol and cholesterol hemisuccinate, the initial rate of Gs activation per mole receptor appeared to be considerably higher than in the native turkey erythrocyte membrane. 相似文献
10.
J L Benovic L J Pike R A Cerione C Staniszewski T Yoshimasa J Codina M G Caron R J Lefkowitz 《The Journal of biological chemistry》1985,260(11):7094-7101
In some systems, such as the turkey erythrocyte, agonist-promoted phosphorylation of the beta-adrenergic receptor appears to be associated with desensitization of the adenylate cyclase system. This process can be partially mimicked by cyclic AMP analogs. Accordingly, we have investigated the phosphorylation of the pure mammalian beta-adrenergic receptor by the pure catalytic subunit of the cyclic AMP-dependent protein kinase. The beta-adrenergic receptor, purified from hamster lung to apparent homogeneity, contains a single polypeptide of Mr approximately 64,000. The receptor can be phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase (approximately 2 mol of phosphate (on serine residues) per mol). Isoproterenol, a beta-agonist, promoted a 2-3-fold increase in the rate of receptor phosphorylation which was blocked by the beta-antagonists propranolol and alprenolol. High performance liquid chromatographic tryptic peptide mapping reveals two major phosphorylation sites. Phosphorylated receptor can be completely dephosphorylated by a high molecular weight phosphoprotein phosphatase. The rate of receptor dephosphorylation is enhanced 2-3-fold by isoproterenol and this effect is blocked by alprenolol. The functional significance of receptor phosphorylation was examined using ligand binding and reconstitution techniques. While the binding of isoproterenol and alprenolol to the receptor was unaffected by phosphorylation, the ability of the receptor to interact with the stimulatory guanine nucleotide regulatory protein, as assessed by isoproterenol-promoted GTPase activity, was decreased 24 +/- 1% (mean +/- S.E., p less than 0.001, n = 17). The quantitative extent of receptor phosphorylation and functional impairment are virtually identical to those previously observed when intact turkey erythrocytes were incubated with cyclic AMP. These data provide a direct demonstration of regulation of the function of the isolated beta-adrenergic receptor by cyclic AMP-dependent protein kinase. 相似文献
11.
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes. 相似文献
12.
Vilardaga JP Frank M Krasel C Dees C Nissenson RA Lohse MJ 《The Journal of biological chemistry》2001,276(36):33435-33443
After stimulation with agonist, G protein-coupled receptors (GPCRs) activate G proteins and become phosphorylated by G protein-coupled receptor kinases (GRKs), and most of them translocate cytosolic arrestin proteins to the cytoplasmic membrane. Agonist-activated GPCRs are specifically phosphorylated by GRKs and are targeted for endocytosis by arrestin proteins, suggesting a connection between GPCR conformational changes and interaction with GRKs and arrestins. Previously, we showed that by substitution of histidine for residues at the cytoplasmic side of helix 3 (H3) and helix 6 (H6) of the parathyroid hormone (PTH) receptor (PTHR), a zinc metal ion-binding site is engineered that prevents PTH-stimulated G(s) activation (Sheikh, S. P., Vilardaga, J.-P., Baranski, T. J., Lichtarge, O., Iiri, T., Meng, E. C., Nissenson, R. A., and Bourne, H. R. (1999) J. Biol. Chem. 274, 17033-17041). These data suggest that relative movements between H3 and H6 are critical for G(s) activation. Does this molecular event play a similar role in activation of GRK and arrestin and in PTHR-mediated G(q) activation? To answer this question, we utilized the two previously described mutant forms of PTHR, H401 and H402, which contain a naturally present histidine residue at position 301 in H3 and a second substituted histidine residue at positions 401 and 402 in H6, respectively. Both mutant receptors showed inhibition of PTH-stimulated inositol phosphate and cAMP generation in the presence of increasing concentrations of Zn(II). However, the mutants showed no Zn(II)-dependent impairment of phosphorylation by GRK-2. Likewise, the mutants were indistinguishable from wild-type PTHR in the ability to translocate beta-arrestins/green fluorescent protein to the cell membrane and were also not affected by sensitivity to Zn(II). These results suggest that agonist-mediated phosphorylation and internalization of PTHR require conformational switches of the receptor distinct from the cAMP and inositol phosphate signaling state. Furthermore, PTHR sequestration does not appear to require G protein activation. 相似文献
13.
Paul A. Loach Pamela S. Parkes-Loach Christine M. Davis Barbara A. Heller 《Photosynthesis research》1994,40(3):231-245
The - and -polypeptides of LH1 isolated from four different photosynthetic bacteria (Rhodospirillum rubrum, Rhodobacter sphaeroides, Rhodobacter capsulatus and Rhodopseudomonas viridis) were used for homologous and hybrid reconstitution experiments with bacteriochlorophyll a. Formation of B820-type subunit complexes and LH1-type complexes were evaluated. The -polypeptides of R. rubrum, Rb. sphaeroides and Rb. capsulatus behaved similarly and formed B820-type subunit complexes in the absence of an -polypeptide. The - and -polypeptides were both required to form a LH1-type complex with each of these three homologous systems. In hybrid experiments where the -polypeptides were tested for reconstitution with -polypeptides other than their homologous partners, half of the twelve possible combinations resulted in formation of both B820- and LH1-type complexes. Three of the combinations that did not result in formation of a LH1-type complex involved the -polypeptide of R. rubrum. It is suggested that these latter results can be explained by charge repulsion between the Lys at position-17 (assigning the conserved His located nearest to the C-terminus as position 0) in the -polypeptide of R. rubrum and each of the heterologous -polypeptides tested, all of which have an Arg at this location. Conclusions that can be derived from these experimental results include: (1) the experimental data support the idea that a central core region of approximately 40 amino acids exists in each of the polypeptides, which contains sufficient information to allow formation of both the B820- and LH1-type complexes and (2) a specific portion of the N-terminal hydrophilic region of each polypeptide was found in which ion pairs between oppositely charged groups on the - and -polypeptides seem to stabilize complex formation.Abbreviations BChl a
bacteriochlorophyll a
- BChl
BChl a is implied
- BChl a
P
BChl a containing phytol as the esterifying alcohol
- BChl a
gg
BChl a containing geranylgeraniol as the esterifying alcohol
- LH1
the core light-harvesting complex
- B873
the core light-harvesting complex of the G-9 mutant (carotenoidless) of R. rubrum or of the wild-type light-harvesting complex after benzene extraction (both with absorption maxima at 873 nm)
- B820
the subunit form of B873 consisting of native - and -polypeptides with the same stoichiometry of 11·2BChl as LH1
- B820-type complex
a complex exhibiting absorption and CD spectra indistinguishable from B820 but composed of either the -polypeptide only, or of a heterologous mixture of - and -polypeptides
- RC
reaction center
- PRC
photoreceptor complex consisting of the RC and LH1
- CD
circular dichroism
- OG
n-octyl -d-glucopyranoside
- HFA
hexafluoroacetone trihydrate 相似文献
14.
When reconstituted phospholipid vesicles that contain purified beta-adrenergic receptors and the GTP-binding regulatory protein Gs were preincubated with agonist before the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), the typical receptor-stimulated GTP gamma S binding reaction was preceded by an even more rapid burst of GTP gamma S binding. This burst was studied in detail at 0 degree C. The rate of the burst was second order in nucleotide and Gs [k assoc approximately 2 X 10(7) (M.min)-1], consistent with diffusion-controlled binding. The magnitude of the burst was always less than the number of receptors present and was roughly linear with receptor number when similarly prepared vesicles were compared. There was no obvious quantitative correlation between the burst and the amount of Gs. The species that gave rise to the burst formed with t1/2 approximately 15 min at 0 degree C in the presence of agonist and decayed by approximately 3 min upon addition of antagonist or detergent. Formation and decay of this species was much faster at at 30 degrees C. The data suggest that a complex of agonist, receptor, and Gs that is primed for the rapid binding of guanine nucleotide can form and be analyzed in reconstituted vesicles. 相似文献
15.
Truncation of the extended carboxyl-terminal domain increases the expression and regulatory activity of the avian beta-adrenergic receptor. 总被引:4,自引:0,他引:4
A series of mutant avian beta-adrenergic receptors with progressively truncated carboxyl termini have been expressed in insect and mammalian cells. Removal of 18-124 amino acid residues caused multiple phenotypic changes in the receptor. Membranes from cells that expressed the truncated receptors displayed elevated basal (2- to 3-fold) and agonist-stimulated adenylylcyclase activities. Adenylylcyclase activity in these membranes also displayed greater stimulation in response to partial agonists. Activity was also markedly stimulated by beta-adrenergic ligands that are usually considered to be antagonists (alprenolol, greater than 4-fold; propranolol, approximately 2-fold). Wild type receptor did not mediate a response to these classical antagonists. After purification and reconstitution with Gs, the truncated receptors did not appear to be more active than the wild type. Guanine nucleotides modulated the affinity of agonist for the truncated receptors, whereas the affinity of agonist for the wild type receptor was not altered by guanine nucleotides. The truncated receptors were solubilized from the membrane more efficiently and were more susceptible to amino-terminal proteolysis than was the wild type protein. These results suggest interaction of the carboxyl terminus of the avian beta-adrenergic receptor with cellular regulatory or structural elements. 相似文献
16.
We determined that the rate of insulin-stimulated autophosphorylation of the insulin receptor is independent of receptor concentration and thus proceeds via an intramolecular process. This result is consistent with the possibility that ligand-dependent autophosphorylation may be a means by which cells can distinguish occupied from unoccupied receptors. We employed dithiothreitol to dissociate tetrameric receptor into alpha beta halves in order to further elucidate the structural requirements for the receptor-mediated kinase activity. Dithiothreitol had a complex biphasic effect on insulin-stimulated receptor kinase activity. Marked stimulation of kinase activity was observed at 1-2 mM dithiothreitol when the receptor was predominantly tetrameric and kinase activity diminished when dimeric alpha beta receptor halves predominate (greater than 2 mM dithiothreitol). N-Ethylmaleimide inhibits insulin-stimulated receptor kinase activity. We suggest that the tetrameric holoreceptor is the most active kinase structure and this structure requires for maximal activity, a reduced sulfhydryl group at or near the active site. We treated receptor preparations with elastase to generate receptor proteolytically "nicked" in the beta subunit. This treatment completely abolishes insulin-dependent autophosphorylation and histone phosphorylation with essentially no effects on insulin binding as determined by affinity labeling of the receptor alpha subunit. We suggest such treatment functionally uncouples insulin binding from insulin-stimulated receptor kinase activity. The possible physiological significance of these findings is discussed. 相似文献
17.
Immunologic probes have been used to examine the conformation of apolipoprotein B (apo-B) as it exists within native low density lipoprotein (LDL) after lipid displacement with Triton X-100 and after denaturation with guanidine hydrochloride organic solvent delipidation and reconstitution with Triton X-100. Antigenic expression was assayed in two systems: by using either Triton X-100 or bovine serum albumin to maintain protein solubility. Apo-B delipidated by lipid displacement using Triton X-100 was virtually identical to LDL-apo-B in both systems, as assayed by polyclonal antisera prepared in rabbits against either antigen. Thus the native antigenic sites are preserved, although the displacement of the lipid core of LDL drastically alters the physical properties of the particle. Apo-B delipidated by solvent extraction in guanidine was reconstituted with Triton X-100 by several methods, and the products were examined immunologically. One method yielded a product that resembled apo-B as delipidated with Triton X-100, although full reconstitution could not be achieved. Nevertheless, Triton promoted refolding of apo-B to reform partial native structure as judged immunologically. By using both physical and immunologic methods for assessing structure, it is clearly evident that the perceptions of the conformational states of reconstituted apo-B can be very different, and multiple criteria need to be used to assess lipoprotein reconstitution. 相似文献
18.
Synthetic peptides, 12-22 amino acid residues long, comprising the presumed coupling sites of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein (Gs), were examined for their ability to modulate Gs activation in turkey erythrocyte membranes. Three peptides corresponding to the second cytoplasmic loop, the N-terminal region of the third cytoplasmic loop, and the N-terminal region of the putative fourth cytoplasmic loop, compete synergistically with the hormone-stimulated receptor for Gs activation with median effector concentrations of 15-35 microM, or 3-4 microM for combinations of two peptides. One peptide, corresponding to the C-terminal region of the third cytoplasmic loop, carries the unique ability to activate the Gs-adenylate-cyclase complex independent of the signalling state of the receptor. These observations are consistent with a dynamic model of receptor-mediated G-protein activation in membranes, where domains composed of the second, third and fourth intracellular loop of the receptor bind to and are interactive with the G-protein heterotrimer, resulting in ligand-induced conformational changes of the receptor. In response to hormone binding, the extent or the number of sites involved in interaction with Gs may be readjusted using a fourth site. Modulation of coupling sites may elicit congruent conformational changes within the Gs heterotrimer, with qualitatively different effects on GTP/GDP exchange in the alpha subunit of Gs and downstream effector regulation. This model corroborates and expands a similar model suggested for activated rhodopsin-transducin interaction [K?nig, B., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A. & Hofmann, K. P. (1989) Proc. Natl Acad. Sci. USA 86, 6878-6882]. 相似文献
19.
Functional reconstitution of the alpha 2-adrenergic receptor with guanine nucleotide regulatory proteins in phospholipid vesicles 总被引:11,自引:0,他引:11
R A Cerione J W Regan H Nakata J Codina J L Benovic P Gierschik R L Somers A M Spiegel L Birnbaumer R J Lefkowitz 《The Journal of biological chemistry》1986,261(8):3901-3909
We describe the successful reconstitution of functional interactions between an inhibitory adenylate cyclase-coupled receptor and various nucleotide-binding regulatory proteins in phospholipid vesicles. The receptor is the alpha 2-adrenergic receptor (alpha 2AR) which has been partially purified (approximately 500-5000-fold) from human platelet membranes. The nucleotide-binding regulatory proteins include purified preparations of human erythrocyte Ni and Ns, bovine retinal transducin and the recently discovered bovine brain No. Addition of the physiologic ligand, epinephrine, to vesicles containing the alpha 2AR and Ni results in stimulation of the GTPase activity in Ni. This stimulation of GTPase activity by epinephrine is prevented in the presence of the alpha-adrenergic antagonist, phentolamine, which indicates that a functional reconstitution of the alpha 2AR and Ni has been established. The maximum turnover number for the alpha 2AR-mediated epinephrine-stimulated GTPase activity in Ni is similar to the maximal turnover numbers obtained for the beta-adrenergic receptor-mediated isoproterenol-stimulated GTPase activity in Ns and the rhodopsin-mediated light-stimulated GTPase activity in transducin (0.5-1.5 mol of Pi released per min per mol of nucleotide regulatory protein). Functional similarities between the alpha 2AR and rhodopsin are observed in their interactions with the various nucleotide-binding regulatory proteins. Thus, both of these receptor proteins are capable of promoting the maximal activation of Ni and No while being much less effective in promoting the activation of Ns. However, there are differences between the alpha 2AR and rhodopsin in their interactions with transducin. Specifically, while rhodopsin will maximally activate transducin, the alpha 2AR is much less effective in promoting this activation (i.e. approximately 20% as effective as rhodopsin). Overall, these results suggest the following specificities of interaction: for rhodopsin, transducin approximately equal to Ni approximately equal to No much greater than Ns; while for alpha 2AR, Ni approximately equal to No greater than transducin greater than or equal to Ns. 相似文献
20.
Fatty acids, cholesterol and glucose present in axenic medium are utilized by growingEntamoeba histolytica but the amoeba is unable to synthesize cholesterol from [U-14 C- ] glucose although the label is incorporated into the fatty acids and non-saponifiable fractions of the organism. Exogenously-added
sonicated dispersions of cholesterol, Β-sitosterol, lanosterol, lecithin and lauric, palmitic, linoleic and stearic acids
are ingested by the amoebae with subsequent loss in amoeboid movement. After a few hours the movement is regained. Cholesterol,
lecithin and the fatty acids stimulate amoebic multiplication but are unable to replace serum in the medium either singly
or in combination.
CDRI Communication No. 2516. 相似文献