首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parasite contamination make difficult laboratory cultivation of green algae and decrease significantly the production of microalgal biomass during industrial cultivation. In the present study the influence of the endogenous abscisic acid content (determinate by gas chromatography) on the host-parasite relationship in different ontogenetic phases of the host Scenedesmus as well as resistance induction after treatment of synchronous algal culture with ABA were studied. Synchronization of algae was carried out by alteration of light and dark periods. The age groups under study were: autospores (at the beginning of the light period), growing cells, mature cells (belonging to in the end of the light period) and mature cells, starting to release autospore at the beginning of dark phases. The higher levels of endogenous ABA during the algal autospore formation as well as exogenous ABA supply of (10−5 M) inhibited the infection process in the pathosystem green microalga Scenedesmus acutus and unicellular fungal parasite Phlyctidium scenedesmi. The treatment with fluridone 10−7 M (an inhibitor of ABA biosynthesis) increased the host susceptibility during all ontogenetic phases. The susceptibility of S. acutus to the chytridial infection depended on the endogenous ABA level during different ontogenetic stages of the alga.  相似文献   

2.
In the view of the facts that algal extracts have been used in agriculture asa source of plant growth stimulating agents and IAA has been shown to bepresent in the extracts, a study was planned to establish whether or notaxenic algae can produce IAA. Evidence is provided for extracellular IAAproduction during culture of two axenic green microalgae. IAAidentification was based on co-chromatography with the standard, analysisof UV and fluorescent spectra, and gas chromatography – selectedion-monitoring mass spectrometry. HPLC analyses showed that underthe experimental conditions the amounts of IAA released to the mediumby Scenedesmus armatus and Chlorella pyrenoidosa weregenerally low. IAA tended to occur in Scenedesmus armatus culturemedium at higher concentrations than in that of Chlorellapyrenoidosa. In fast-growing cultures of Scenedesmus armatus,constantly aerated with CO2/air mixture, the concentration of IAAcalculated per cell was less than in the slow-growing cultures.  相似文献   

3.
We cultured individuals of two Daphnia species and their hybrid on two different algae, Scenedesmus obliquus and Chlamydomonas globosa, in different concentrations. Our results suggest that culture conditions of S. obliquus can be such that the algal cells become toxic to Daphnia  相似文献   

4.
Over 100 species of red algae have been described as parasites on other red algae, but the majority show some degree of pigmentation. This raises the question of their parasitic status, especially their abilities to photosynthesize and their dependence on their host for fixed carbon. Are they considered parasites only based on morphological characters, for example, reduced size and secondary pit connection to the host? Translocation of nutrients from host to parasite have been shown for very few red algal parasites, and these were mostly unpigmented. This study investigated three pigmented red algal parasites (Rhodophyllis parasitica, Vertebrata aterrimophila and Pterocladiophila hemisphaerica) from New Zealand. We quantified their chlorophyll a content and also measured their PSII capacity using PAM fluorometry. All three parasites contained chlorophyll a. The parasites Rhodophyllis parasitica and Vertebrata aterrimophila were not able to photosynthesize and must therefore be fully nutritional dependent on their host. The parasite Pterocladiophila hemisphaerica was able to photosynthesize independently, but based on molecular characteristics we suggest that it relies on the host plastid to do photosynthesis. Our results support the parasitic status of all three species and highlights the necessity of more studies investigating the differences in host dependency in red algal parasites.  相似文献   

5.
The advective transport of algal cells into the interstices of the hyporheic zone of the River Elbe was spatially and temporally heterogenous. Even deep sediment layers were reached by large phytoplankton species. Therefore, it is suggested that (i) the advective interstitial transport patterns vary between different algal sizes and morphotypes and (ii) sediment characteristics, expressed by the permeability coefficient kf of porous media, affect retention and retardation of surface water algae during subsurface transport. The transport behaviour of different green algae (Chlorella sp., Scenedesmus acuminatus, Desmodesmus communis, and Pediastrum duplex) and algal sized microspheres was tested in flow‐through column experiments with hyporheic sediments. The algal cell transport was directly related to the permeability of the column sediments. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In the present work, the long-term effect (14 days) of copper on the levels of intracellular and total copper accumulation, growth, assimilation pigment composition, chlorophyll a fluorescence, soluble protein content and oxidative status (production of hydrogen peroxide and superoxide) in two algal species (Scenedesmus quadricauda and Trebouxia erici) was assessed. Scenedesmus quadricauda is a free-living alga while Trebouxia erici is the photobiont of a lichen. The presence of copper negatively affected growth, assimilation pigments, chlorophyll a fluorescence, soluble protein content and oxidative status in both the algae. However, Scenedesmus was much more sensitive compared to Trebouxia.  相似文献   

7.
Grazing resistance in nutrient-stressed phytoplankton   总被引:7,自引:0,他引:7  
Grazing experiments were performed with the zooplankters Daphnia pulex and Daphnia magna, feeding on phosphorus-saturated and phosphorus-limited cells of two green algae (Scenedesmus subspicatus and Selenastrum capricornutum). P-limited algal cells passed largely intact through the gut and were thus spared from heavy grazing pressure. P-saturated algal cells, in contrast, were efficiently assimilated. Structural and morphological changes in the P-limited cells most probably reduced their digestibility. This phenomenon may be an important factor in zooplankton production and competition, and may serve as an example of a highly efficient strategy of P-limited algae to resist heavy grazing pressure.  相似文献   

8.
Abstract

A Potentiometric titration method was used to study the adverse effect of arsenate (As(V)) and arsenite (As(III)) on inorganic carbon uptake in suspensions of the green alga Scenedesmus obliquus. The measurements were performed in a closed CO2-system with diluted synthetic seawater (1‰ salinity) as ionic medium. Usually, the algal chlorophyll concentration was 0.4 mg dm?3, while the arsenate- and arsenite-concentrations were varied within the limits 0.1 to 200 μmol dm?3. In some experiments arsenate toxicity was studied in the presence of 1 to 100 μmol dm?3 of phosphate (P(V)).

With concentrations of arsenate or arsenite less than 0.1 μmol dm?3 no toxic effects were observed. However, at As-concentrations of 200 μmol dm?3, the algal carbon uptake was reduced by 41% with arsenate and 29% with arsenite, i.e., arsenate is more toxic to Scenedesmus obliquus than arsenite. The toxicity of arsenate was negligible in the presence of a ten fold excess of phosphate. This is probably due to chemical similarities between arsenate and phosphate causing competition between the ions for the binding sites.

The importance of taking the speciation as well as the buffer capacity of the algal system into account, when calculating the carbon uptake, is also discussed.  相似文献   

9.
Preferential feeding behaviour by Daphnia magna was shown when Daphnia were fed on a mixture of 14C-labelled algae (Chlorella vulgaris or Scenedesmus quadricauda) and 3H-labelled bacteria (Escherichia coli). Daphnia consumption of bacteria was equal or higher in the presence of algae. On the other hand, in the presence of bacteria, algal consumption decreased by 40–70% compared to algal consumption in the absence of bacteria. 14C radioactive uptake was in good agreement with the chlorophyll content and demonstrates the preferential feeding behaviour of Daphnia.  相似文献   

10.
Summary The hot-water extract of Scenedesmus acutus 276-3a enhances acid formation by Lactobacillus casei var. sbirota, Streptococcus lactis and Streptococcus thermophilus appreciably. At least in S. lactis the stimulation is not caused by mineral constituents such as Mn2+. In order to facilitate screening, a quick test in tubes was used. Stimulation of lactobacilli by algal extract is also demonstrated in tests on agar plates containing TTC. Bioautography of algal extract fractions on TTC plates enabled adenine and hypoxanthine to be identified as growth factors in algal extract which contributed towards the stimulation of S. lactis.Dedicated to Professor Dr. Wilhelm Halbsgut on the occasion of his 65th birthday  相似文献   

11.
Screening of algal strains for metal removal capabilities   总被引:1,自引:0,他引:1  
Eight algal species were tested for their ability to remove five toxic metalsduring 30-min exposures to single-metal (1 mg L-1) solutions at pH7. Efficacy of metal bioremoval varied according to algal species and metal. Al+3 was best removed by the thermophilic blue-green alga(cyanobacterium) Mastigocladus laminosus, Hg+2 and Zn+2 by the thermophilic and acidophilic red alga Cyanidiumcaldarium, and Cd+2 by C. caldarium and the green alga Scenedesmus quadricauda. All of these alga/metal combinations resultedin >90% metal removal. However, none of the eight algal speciesremoved more than 10% of Cr+6. Results indicate that some toxicmetals are more readily removed than others are by algae and that selectionof appropriate strains could potentially enhance bioremoval of specificmetals from wastewater at neutral pH.  相似文献   

12.
In this paper, the efficiency of pigment and fatty acid extraction from resistant algae using Scenedesmus obliquus as an example was examined. We found that adding quartz sand and solvent to freeze-dried algal material and subsequent extraction in an ultrasound bath for 90min at –4°C resulted in excellent extraction of these compounds. This extraction method was compared with a method regularly used for extraction of fatty acids and pigments, i.e. addition of solvents to algal material with subsequent incubation. Our extraction using the ultrasound and sand method was about twice as efficient as this method for both pigments and fatty acids. The ultrasound method is simple, extracts over 90% of the different substances in one step and conserves the relationships of pigments and fatty acids. In addition, no alteration- or breakdown products were observed with the new method. Thus, this method allows accurate quantitative extraction of both pigments and fatty acids from Scenedesmus obliquus and other algae. The method was also been found to be as effective for Cryptomonas erosa (Cryptophyceae), Cyclotella meneghiniana (Bacillariophyceae), Microcystis aeruginosa (Cyanophyceae), and Staurastrum paradoxum (Chlorophyceae, Desmidiaceae) and is thus applicable to a wide spectrum of algae.  相似文献   

13.
Three different bioassays, two culture tube test methods with respectively Stigeoclonium tenue or Scenedesmus quadricauda and one bottle test with S. quadricauda, were compared. The yields obtained in the various tests were linearily correlated (r = 0.86, P < 0.001). The same primary limiting nutrient was indicated by the bioassays in most cases. However the algal growth in the tube test using Stigeoclonium was more often P-limited. In the case of S. quadricauda both test methods (tube and bottle) were nearly equally effective. The yields of N-limited samples were significantly correlated with the inorganic-N as well as total-N concentration of the water sample. A significant correlation of the ortho-P as well as total-P concentration with the yield of the P-limited assays was only found for Stigeoclonium tenue. The critical total N/P ratio (by weight) for N or P limitation was approximately 17: 1 for Stigeoclonium tenue and 22: 1 for Scenedesmus quadricauda.  相似文献   

14.
In several groups of parasites including insect, flowering plant, fungal, and red algal parasites, morphological similarities of the parasites and their specific hosts have led to hypotheses that these parasites evolved from their hosts. But these conclusions have been criticized because the morphological features shared by parasite and host may be the result of convergent evolution. In this study, we examine the hypothesis, originally put forth by Setchell, that adelphoparasitic red algae, that is, parasitic red algae that are morphologically very similar to their hosts, evolved from their specific red algal hosts. Rather than comparing morphological features of parasites and hosts, small-subunit 18S nuclear ribosomal DNA and the internal transcribed spacer regions (ITSs) of the nuclear ribosomal repeat are compared for five parasites, their hosts, and related nonhosts from four red algal orders. These comparisons reveal that each of these adelphoparasites has evolved either directly from the host on which it is currently found, or it evolved from some other taxon that is closely related to the modern host. The parasites Gardneriella tuberifera, Rhodymeniocolax botryoides, and probably Gracilariophila oryzoides evolved from their respective hosts Sarcodiotheca gaudichaudii, Rhodymenia pacifica, and Gracilariopsis lemaneiformis, respectively. The parasite Faucheocolax attenuata evolved from either Fauchea laciniata or Fauchea fryeana and subsequently radiated onto the other host species. Presently this parasite is found on both hosts. Lastly, some parasitic genera such as Plocamiocolax are polyphyletic in their origins. A species of Plocamiocolax from an Antarctic Plocamium cartilagineum appears to have evolved from its host whereas the common Plocamiocolax pulvinata that occurs along the west coast of North America likely evolved from Plocamium violaceum and radiated secondarily onto its present day host, Plocamium cartilagineum.  相似文献   

15.
Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host‐derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free‐living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.  相似文献   

16.
Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.  相似文献   

17.
The diatom genera Licmophora and Fragilaria are frequent epiphytes on marine macroalgae and can be infected by intracellular parasitoids traditionally assigned to the oomycete genus Ectrogella. Much debate and uncertainty remains about the taxonomy of these oomycetes, not least due to their morphological and developmental plasticity. Here, we used single‐cell techniques to obtain partial sequences of the parasitoids 18S and cox2 genes. The former falls into two recently identified clades of Pseudo‐nitzschia parasites temporarily named OOM_1_2 and OOM_2, closely related to the genera of brown and red algal pathogens Anisolpidium and Olpidiopsis. A third group of sequences falls at the base of the red algal parasites assigned to Olpidiopsis. In one instance, two oomycete parasitoids seemed to co‐exist in a single diatom cell; this co‐occurrence of distinct parasitoid taxa not only within a population of diatom epiphytes, but also within the same host cell, possibly explains the ongoing confusion in the taxonomy of these parasitoids. We demonstrate the polyphyly of Licmophora parasitoids previously assigned to Ectrogella (sensu Sparrow, 1960) and show that parasites of red algae assigned to the genus Olpidiopsis are most likely not monophyletic. We conclude that combining single‐cell microscopy and molecular methods is necessary for their full characterisation.  相似文献   

18.
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell‐cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.  相似文献   

19.
The determinants of host specificity, which are poorly understood in red algal parasites, were studied in the red algal parasites Bostrychiocolax australis Zuccarello et West and Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita. Culture studies were performed to determine host range, sites of host resistance, and genetics of transmission of resistance. Both species parasitize Bostrychia radicans (Montagne) Montagne, whereas Bostrychiocolax australis also parasitizes Bostrychia moritziana (Sonder ex Kützing) J. Agardh and Stictosiphonia kelanensis (Grunow ex Post) R. J. King et Puttock. Isolates of B. radicans resistant to both parasites were found worldwide, often within the same population as susceptible isolates. On resistant Bostrychia species and isolates, specificity was manifested at three stages: 1) host penetration, in which the spore germ peg failed to penetrate the host cuticle/wall; 2) parasite–host cell fusion, in which the fusion cell died and the parasite died; and 3) growth, in which parasites grew but soon died; parasites rarely reproduced and infections did not continue in culture. Resistance to parasite infection was usually transmitted as a dominant trait and did not segregate as a single locus during meiosis. In certain crosses, transmission of resistance was non-mendelian.  相似文献   

20.
Morphological similarities of many parasites and their hosts have led to speculation that some groups of plant, animal, fungal, and algal parasites may have evolved directly from their hosts. These parasites, which have been termed adelphoparasites in the botanical literature, and more recently, agastoparasites in the insect literature, may evolve monophyletically from one host and radiate secondarily to other hosts or, these parasites may arise polyphyletically, each arising from its own host. In this study we compare the internal transcribed spacer regions of the nuclear ribosomal repeats of species and formae specialis (host races) included in the red algal parasite genus Asterocolax with its hosts, which all belong to the Phycodrys group of the Delesseriaceae and with closely related nonhost taxa of the Delesseriaceae. These analyses reveal that species of Asterocolax have evolved polyphyletically. Asterocolax erythroglossi from the North Atlantic host Erythroglossum laciniatum appears to have evolved from its host, whereas taxa included in the north Pacific species Asterocolax gardneri have had two independent origins. Asterocolax gardneri from the host Polyneura latissima probably arose directly from this host. In contrast, all other A. gardneri formae specialis appear to have originated from either Phycodrys setchellii or P. isabelliae and radiated secondarily onto other closely related taxa of the Phycodrys group, including Nienburgia andersoniana and Anisocladella pacifica. Gamete crossing experiments confirm that A. gardneri from each host is genetically isolated from both its host, and from other A. gardneri and their hosts. Cross-infection experiments reveal that A. gardneri develops normally only on its natural host, although some abberrant growth may occur on alternate hosts. The ability of red algal parasites to radiate secondarily to other red algal taxa, where they may become isolated genetically and speciate, suggests that this process of speciation is not a “genetic dead end” but one that may give rise to related clusters of parasite species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号