首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Phenylalanine synthesis from glucose and ammonia was studied using a hyperproducing mutant of Escherichia coli. Kinetic parameters (typical values : 8.7 g phenylalanine/l, yield on glucose 0.19 g/g, productivity 0.44 g/l/h) were similar to batch culture values.  相似文献   

2.
Summary Zymomonas mobilis and recombinant Escherichia coli B (pLOI297) were compared in side-by-side batch fermentations using a synthetic cellulose hydrolysate (glucose/salts) medium with pH control at 6.0 and an inoculation cell density of 35–50 mg dry wt. cells/L. At a nominal glucose concentration of 6%, both cultures achieved near maximal theoretical ethanol yields; however, the Z. mobilis fermentation was complete at 13h compared to 33h for the E.coli fermentation. With approx.12% glucose, the Z. mobilis fermentation was complete in 20h with a process yield of 0.49 g ethanol/g added glucose compared to the E. coli fermentation which remained 20% incomplete after 6 days resulting in a process yield of only 0.32 g/g. Nutrient supplementation (10g tryptone/L) resulted in complete fermentation of 12% glucose (pH 6.3) by the recombinant E. coli in 4 days, with a yield of 0.48 g/g.  相似文献   

3.
Summary A laboratory-scale, two-stage continuous process for the production of curdlan-type exopolysaccharide has been operated in steady-state for 500hr. Two continuous flow, constant volume fermenters are connected in series. A stable, curdlan-producing strain of Alcaligenes faecalis var myxogenes ATCC 31749 is grown aerobically in a nitrogen-limited chemostat operating near Dmax at 0.24 hr–1. The effluent is introduced directly into a second larger constant volume fermenter which is being simultaneously fed a glucose solution at a fixed rate. Under sub-optimal conditions associated with curdlan production, the observed Qp was 0.05 g curdlan/g cell/hr. At a biomass level of 4 g/L in the second stage, curdlan was present at 10 g DW/L and the volumetric productivity was 0.2 g/g cell/hr. The substrate (glucose) conversion efficiency was 42%. The process is described in patents applied for on behalf of George Weston Ltd. (Toronto, Canada).  相似文献   

4.
Summary Nitrosoguanidine-induced, stable theromotolerant mutant (ZMI2) ofZymomonas mobilis ZM4 was found to possess almost normal cell morphology, and a better ethanol tolerance at 42°C than the parent strain (ZM4). Its kinetic parameters, in converting different concentrations of glucose to ethanol, were comparable to ZM4 at 30°C, and significantly superior at 42°C. In a 200 g/L glucose medium in a pH-stat (5.0) at 42°C, the mutant yielded more ethanol (71.0 g/L) (improved to 73.7 g/L at pH 5.5) and alcohol dehydrogenase (ADH) than the parent strain. The ADH levels in both the strains were repressed, depending upon the increased level of sugar and degree of temperature.  相似文献   

5.
Summary A growth associated formation of extracellular 5-aminolevulinic acid (ALA) was found in the homoacetogenesis of glucose byClostridium thermoaceticum grown in minimal defined medium. The growth and ALA production was enhanced by L-cysteine HCl both in complex medium (UM) and minimal defined medium (MDM). The amount of ALA produced extracellularly in MDM wasca. 15 mg/L after 90-h anaerobic cultivation (cell-mass: 1.5 g/l; glucose consumed: 20 g/l).  相似文献   

6.
Summary Bacillus stearothermophilus BR135 (ATCC 29609)amy gene was cloned in pBR322 from its plasmid DNA and was subcloned in a vector useful both forB. subtilis andE. coli.E.coli HB101 harboring the plasmid pSS099 when grown in L medium in presence of 5. g/ml chloramphenicol produces 70 units/ml of extracellular -amylase. This is nearly twice that ofE.coli cells harboring pSSO76, a plasmid havingamy ofB.stearothermophilus BR135 atHindIII site of pBR322. Characteristically the protein was a 58 kd protein and cross reacted with antiserum developed against purified -amylase of BR135.  相似文献   

7.
Summary AnE. coli harboring a vector containing double promoters, a signal sequence, and interferon gene was used. By fitting the feed rate of growth-limiting nutrients to the precalculated demand of the microorganism on the basis of a specific growth rate of 0.1 h–1, fed-batch fermentations were performed. A cell density of 26 g/L was achieved after 46 hrs cultivation at 30°C. The culture was induced by IPTG and produced 1x109 IU/L of human leukocyte interferon.  相似文献   

8.
Summary A strain ofBacillus subtilis was found to produce a cellobiase resistant to catabolic repression by glucose. When the structural gene encoding cellobiase was cloned and expressed inEscherichia coli, the enzyme produced was resistant to repression by glucose.  相似文献   

9.
Summary A data acquisition/control microcomputer system was interfaced to a commercial HPLC data transmission module. Control of substrate (ethanol) levels for four 7.5 L fermenters containing 100 g/L wet weight of the yeastCandida norvegensis was accomplished by employing intermittent, automated HPLC monitoring and a BASIC-encoded proportional integral policy for controlling substrate feed rates. Ethanol levels were maintained at 0.25, 0.50, 0.75 and 1.00% w/v.  相似文献   

10.
Summary Three strains ofPichia stipitis and three ofCandida shehatae were compared withPachysolen tannophilus in their abilities to ferment xylose at concentrations as high as 200 g/L when subjected to both aerobic and microaerophilic conditions. Evaluations based on accumulated ethanol concentrations, ethanol productivities, xylose consumption, and ethanol and xylitol yields were determined from batch culture time courses. Of the strains considered,P.stipitis NRRL Y-7124 seemed most promising since it was able to utilize all but 7 g/L of 150 g/L xylose supplied aerobically to produce 52 g/L ethanol at a yield of 0.39 g per gram xylose (76% of theoretical yield) and at a rate comparable to the fastest shown byC.shehatae NRRL Y-12878. For all strains tested, fermentation results from aerobic cultures were more favorable than those from microaerophilic cultures.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

11.
Summary Candida shehatae ATCC 22984 and Pichia stipitis CBS 5776 were tested for ethanol production from xylose, glucose-xylose mixtures, and aspen wood total hydrolysates. Adaptation of these yeasts to wood hydrolysate solutions by recycling resulted in improved substrate utilization and ethanol production. Compared to the non-adapted cultures, recycled C. shehatae and P. stipitis in aspen hydrolysate increased g ethanol/g sugar consumed from 0.39 and 0.41 to 0.45 and 0.47; while ethanol production from a 70:30 glucose-xylose solution (total sugars 140 g/L) was 45 g/L in 24 h and 60 g/L in 72 h with the adapted yeasts compared to 15 g/L and 28 g/L in the same times with the parent strains.  相似文献   

12.
Summary A highly flocculent strain of Saccharomyces uvarum was used to convert glucose to ethanol and CO2 in a single stage, continuous, gas-lift tower fermenter. Satisfactory operation was maintained in prolonged runs with yeast concentrations in excess of 100 g/L (d.w.) and hydraulic retention times less than 0.4 h. Maximum ethanol concentration and productivity were 88 g/L and 44.5 g/Lh respectively. Conversion efficiency was between 80 and 95% of theoretical.  相似文献   

13.
Natural ability to ferment the major sugars (glucose and xylose) of plant biomass is an advantageous feature of Escherichia coli in biofuel production. However, excess glucose completely inhibits xylose utilization in E. coli and decreases yield and productivity of fermentation due to sequential utilization of xylose after glucose. As an approach to overcome this drawback, E. coli MG1655 was engineered for simultaneous glucose (in the form of cellobiose) and xylose utilization by a combination of genetic and evolutionary engineering strategies. The recombinant E. coli was capable of utilizing approximately 6 g/L of cellobiose and 2 g/L of xylose in approximately 36 h, whereas wild-type E. coli was unable to utilize xylose completely in the presence of 6 g/L of glucose even after 75 hours. The engineered strain also co-utilized cellobiose with mannose or galactose; however, it was unable to metabolize cellobiose in the presence of arabinose and glucose. Successful cellobiose and xylose co-fermentation is a vital step for simultaneous saccharification and co-fermentation process and a promising step towards consolidated bioprocessing.  相似文献   

14.
Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying β-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.  相似文献   

15.
Bernier  R.  Rho  D.  Arcand  Y.  Desrochers  M. 《Biotechnology letters》1985,7(11):797-802
Summary The plasmid pRH271, harboring a xylanase gene cioned fromBacilius subtilis, has been transferred into a mutant ofE. coli SK2284 which allowed the release of part of the xylanase in the culture supernatant. Kinetic parameters of this recombinantE. coll strain were determined in microscale batch culture with and without the selective pressure of antibiotics. No significant difference in µmax was observed for the nontransformedE. coli strain when compared to the recombinant strain. However, K5 values for glucose were two times higher in the case of the recombinant strain. Preliminary study of xylanase production in a large batch farmenter was also described.  相似文献   

16.
Lu Y  Sharkey TD 《Planta》2004,218(3):466-473
Transitory starch is stored during the day inside chloroplasts and then broken down at night for export. Recent data indicate that maltose is the major form of carbon exported from the chloroplast at night but its fate in the cytosol is unknown. An amylomaltase gene (malQ) cloned from Escherichia coli is necessary for maltose metabolism in E. coli. We investigated whether there is an amylomaltase in the cytosol of plant leaves and the role of this enzyme in plants. Two mutants of Arabidopsis thaliana (L) Heynh. were identified in which the gene encoding a putative amylomaltase enzyme [disproportionating enzyme 2, DPE2 (DPE1 refers to the plastid version of this enzyme)] was disrupted by a T-DNA insertion. Both dpe2-1 and dpe2-2 plants exhibited a dwarf phenotype and accumulated a large amount of maltose. In addition, dpe2 mutants accumulated starch and a water-soluble, ethanol/KCl-insoluble maltodextrin in their chloroplasts. At night, the amount of sucrose in dpe2 plants was lower than that in wild-type plants. These results show that Arabidopsis has an amylomaltase that is involved in the conversion of maltose to sucrose in the cytosol. We hypothesize that knocking out amylomaltase blocks the conversion from maltose to sucrose, and that the higher amount of maltose feeds back to limit starch degradation reactions in chloroplasts. As a result, dpe2 plants have higher maltose, higher starch, and higher maltodextrin but lower nighttime sucrose than wild-type plants. Finally, we propose that maltose metabolism in the cytosol of Arabidopsis leaves is similar to that in the cytoplasm of E. coli.Abbreviations F6P fructose 6-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - GTase glucanotransferase  相似文献   

17.
L‐tryptophan is an essential amino acid widely used in food and pharmaceutical industries. However, its production via Escherichia coli fermentation suffers severely from both low glucose conversion efficiency and acetic acid inhibition, and to date effective process control methods have rarely been explored to facilitate its industrial scale production. To resolve these challenges, in the current research an engineered strain of E. coli was used to overproduce L‐tryptophan. To achieve this, a novel dynamic control strategy which incorporates an optimized anthranilic acid feeding into a dissolved oxygen‐stat (DO‐stat) glucose feeding framework was proposed for the first time. Three original contributions were observed. Firstly, compared to previous DO control methods, the current strategy was able to inhibit completely the production of acetic acid, and its glucose to L‐tryptophan yield reached 0.211 g/g, 62.3% higher than the previously reported. Secondly, a rigorous kinetic model was constructed to simulate the underlying biochemical process and identify the effect of anthranilic acid on both glucose conversion and L‐tryptophan synthesis. Finally, a thorough investigation was conducted to testify the capability of both the kinetic model and the novel control strategy for process scale‐up. It was found that the model possesses great predictive power, and the presented strategy achieved the highest glucose to L‐tryptophan yield (0.224 g/g) ever reported in large scale processes, which approaches the theoretical maximum yield of 0.227 g/g. This research, therefore, paves the way to significantly enhance the profitability of the investigated bioprocess.
  相似文献   

18.
Summary Bacillus subtilis CD4, when grown in nutrient broth or minimal medium in presence of xylan, produced extracellular xylanase that hydrolyzed xylan optimally at pH 5. The enzyme was induced by xylan, xylose and glucose. Addition of xylose or glucose in xylan containing medium did not affect enzyme production. The structural gene encoding xylanase was cloned and expressed in E. coli. The recombinant enzyme exhibited similar properties like that of native enzyme including resistance to repression by xylose and glucose.  相似文献   

19.
Summary The maximum level of human interferon- activity was expressed under the control of theE. coli tryptophan promoter whenE. coli cells were induced at late logarithmic growth phase by 3,-indoleacrylic acid (IAA). The level is one order of magnitude higher than that obtained when the cells were induced at early logarithmic or stationary phase. When IAA was subsequently further added, the decrease in the activity observed at a latter period of fermentation was suppressed.  相似文献   

20.
Summary Vertical Rotating Immobilized Cell Reactor was designed and built for glucose conversion into ethanol. Immobilized biomass units withZ. mobilis cells attached into polyurethane foam discs were fixed along a rotating shaft inside the bioreactor. The effect of rotation speed on the concentration of immobilized biomass was studied. Stability of the bioreactor over long-term operation was dependent on the concentration of the immobilized biomass. With fermentation carried out at 6 rpm a constant active immobilized cell concentration of only 34.5 g/l was maintained and used to convert up to 140 g glucose/l into more than 70 g ethanol/l with a volumetric ethanol productivity of 63 g/l/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号