首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nuclear basic proteins from morphologically and functionally mature sperm of Xenopus laevis were analyzed by acid/urea/Triton X-100 polyacrylamide gel electrophoresis (AUT-PAGE). Six sperm-specific proteins (SP1-6) were identified in addition to somatic histones H3, H4 and smaller amount of H2A and H2B, but not H1. Of these, SP3–6 were unique in containing 33–41% arginine and having very low lysine/arginine ratios, while SP2 was more similar to H3 and H4 in having a lower arginine and higher lysine content. Fractionations of testicular cells at different spermatogenic stages by unit gravity sedimentation showed that primary spermatocytes and acrosomal vesicle spermatids possess typical somatic type histones but no SPs. Injection of [14C]-arginine into the testis and its tracing by fluorography on AUT-PAGE gels indicated that all somatic histones are synthesized during the stages between spermatogonia and primary spermatocytes, whereas SPs are synthesized at differentially regulated rates during the stages after acrosomal vesicle formation. In indirect immunofluorescence studies with anti-SP3-5 rabbit antiserum, a positive reaction was observed in the last step of spermiogenesis after the commencement of nuclear coiling.  相似文献   

2.
3.
ABSTRACT

During spermatogenesis, cells developed as a result of numerous mitotic and meiotic divisions transform into mature spermatozoids. In spermatids, remodelling of chromatin structure takes place which is connected with nuclear protein exchange, DNA double strand breaks and epigenetic modifications. Chromatin remodelling complexes, which have mostly been studied in animals, also participate in this process. The Brg1 protein, a functional homologue of the yeast Swi2/Snf2 catalytic subunit of the SWI/SNF complex, is engaged in regulation of cell proliferation and highly expressed in round spermatids in mammals. Immunocytochemical studies with the anti-Brg1 antibody revealed positive reactions in nuclei of the green alga Chara vulgaris at the 64-cell proliferative stage and in spermatid nuclei at the I/II–VII spermiogenesis stages. The most intensive reaction was observed at the early spermiogenesis stages (I/II–III), while at the initial stages of a proliferative phase (4-, 8- and 16-cell) the reaction was not observed, and at 32-cell and VII stages the immunosignals were very weak. Ultrastructural studies with the immunogold technique confirmed the results of the immunocytochemical studies. The highest numbers of gold grains were observed at stages I/II and III of spermiogenesis, and together they constituted above 48% of the total number of gold grains. A much lower, but still substantial, amount of these grains was observed at the 64-cell stage and IV stage (>15% and 17%), respectively. Percentage analysis revealed the lowest number of gold particles at stage VII (3.72%). The significant presence of Brg1 protein at early spermiogenesis stages is correlated with acetylation of the H4K12 histone. It may also be hypothesized that in C. vulgaris the Brg1 subunit participates in processes important for proper chromatin condensation and facilitates maintenance of the correct shape of the spermatid nucleus. On the basis of earlier and current studies it seems that chromatin remodelling in spermatids of this model alga proceeds according to the model presented for mammals.  相似文献   

4.
A kinetics study has demonstrated histone synthesis occurring at two distinct phases during meiotic prophase of mouse spermatogenesis. These two periods have been delineated by quantifying the synthesis of DNA and basic nuclear proteins in spermatogenic cells at discrete intervals following the intratesticular injection of [3H] thymidine and [14C] arginine, respectively. One phase of histone synthesis occurs coincident with DNA synthesis in preleptotene spermatocytes. By contrast, a second phase of histone synthesis occurs during midprophase of meiosis, independent of semiconservative DNA synthesis. The [14C] arginine incorporated into the basic nuclear proteins of pachytene spermatocytes is conserved during spermiogenesis and then subsequently discarded within the residual bodies, which are formed during late spermiogenesis. Fluorographic analyses of isotopically labeled basic nuclear proteins in pachytene spermatocytes has shown that only the somatic complement of histones are synthesized during the preleptotene period, whereas the second phase involves the synthesis of proteins H1t, H2S, and "A". In addition, several nonhistone basic nuclear proteins are synthesized concomitant with the germ cell-specific histones. Thus, the data clearly demonstrate that pachytene spermatocytes actively synthesize a number of novel chromatin-associated polypeptides.  相似文献   

5.
Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.  相似文献   

6.
Expression of the testis-specific histone TH2B, the phosphoprotein p19, and the transition proteins TP1 and TP2, was localized in the rat testis and quantified, using in situ hybridization of their mRNAs with radiolabeled probes and image analysis. In a first study, expression was assessed during testicular development between day 2 and day 65 postpartum. TH2B mRNAs appeared first in preleptotene spermatocytes (PL) on day 12 and in pachytene spermatocytes (PS) on day 18; p19 mRNAs were present in PS from day 18 onward, and TP1 and TP2 mRNAs were detected in round spermatids (RS) from day 32 onward. In the second trial, the expression of these four genes was studied throughout the cycle of spermatogenic epithelium in mature animals. TH2B mRNAs were localized in B spermatogonia at stage V, and in PL at stages VII and VIII but no longer in leptotene and zygotene spermatocytes. Thereafter, TH2B mRNAs were observed in PS from stages III–IV to XIII. The steady-state mRNA level per cell was high in PS with a maximum at stages IX–X. p19 mRNAs were present in PS from stages III–IV onward and in RS up to stages 1–2 of spermiogenesis. The maximum mRNA level per cell was observed in PS between stages VII and XIII. The presence of TP1 mRNAs was restricted to spermatids from steps 6 to 15–16 of spermiogenesis while TP2 mRNAs were detected in spermatids only between step 7 and step 13. The highest steady-state amounts of mRNAs were observed between step 7 and step 14 for TP1 and between step 10 and step 12 for TP2. Mol. Reprod. Dev. 51:22–35, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Transition proteins and protamines are highly basic sperm-specific nuclear proteins that serve to compact the DNA during late spermiogenesis. To understand their sequential role in this function, transition protein 1 (TP1), transition protein 2 (TP2), and protamine 1 (P1) were assayed by polyacrylamide gel electrophoresis in pools of microdissected, staged seminiferous tubule segments in the rat. The results were compared with immunocytochemical analyses of squash preparations from accurately identified stages of the epithelial cycle. TP2 was the first to appear as a faint band at stages IX–XI, followed by high levels at stages XII–XIV of the cycle. TP1 showed a low expression at stage XII of the cycle and peaked at stages XIII–I, whereas protamine 1 first appeared at stage I of the cycle and remained high throughout the rest of spermiogenesis. Immunocytochemical analyses and Western blots largely confirmed these results: TP2 in steps 9–14, TP1 in steps 12–15, and P1 from late step 11 to step 19 of spermiogenesis. We propose that TP2 is the first nucleoprotein that replaces histones from the spermatid nucleus, and its appearance is associated with the onset of nuclear elongation. TP1 shows up along with the compaction of the chromatin. The two transition proteins seem to have distinct roles during transformation of the nuclei and compaction of spermatid DNA.  相似文献   

8.
In the fur-seal germ cells at various stages of development are situated in the spermatic canaliculi as concentric layers in accordance with the stages of the spermatogenic cycle. By means of PAS-reaction 18 stages have been revealed in spermatogenesis of the fur-seal and basing on the first 15 of them, 15 stages of the spermatogenic cycles have been presented. Transformations of the nucleus during the process of spermatids development proceed similar to other animals studied, formation of acrosomes is accompanied with a specific for the given species development of temporal formation--tubulo-bulbar complexes, reduced at terminal stages of spermiogenesis.  相似文献   

9.
The in vitro incorporation of tritiated uridine into RNA by the spermatogenic cells of the rat has been analyzed by high-resolution autoradiography. Special attention has been focused on the unique cytoplasmic organelle, the chromatoid body. After a short labeling time (2 h), this organelle remains unlabeled in the vast majority of the early spermatids although the nuclei are labeled. When the 2-h incubation with (3H)uridine is followed by a 14-h chase, the chromatoid body is seen distinctly labeled in all spermatids during early spermiogenesis from step 1 to step 8. Very few grains are seen elsewhere in the cytoplasm of these cells. When RNA synthesis in the spermatid ceases, the chromatoid body also remains unlabeled. It is likely that the chromatoid body contains RNA which is synthesized in the nuclei of the spermatids. The function of this RNA as a stable messenger RNA needed for the regulation of late spermiogenesis is discussed.  相似文献   

10.
11.
Spermatogenesis in the dogfish is characterized by the synchronous development of germinal cells inside follicles. This particularity has permitted studies on precise stages of cell differentiation, especially on the evolution of chromatin structure. A microelectrophoretic method has been devised for the determination of the basic nuclear protein content of accurately identified homogeneous stages of spermatid differentiation. No significant difference was observed during the first stages of spermiogenesis, i.e., in round spermatids, where a typical histone complement was present. At the beginning of nuclear elongation, two new basic protein fractions appeared and coexisted for some time with typical histones; they replaced somatic histones progressively. Later, during elongation, four proteins of high electrophoretic mobility appeared and gradually replaced the intermediary basic proteins. In elongated spermatids, DNA was found tightly packed by these four proteins: three are arginine- and cysteine-rich (Z1, Z2 and S4), the fourth is arginine-rich (Z3). At first, these fractions are all soluble in 0.25 M HCl but during sperm maturation only one (Z3) remains acid-soluble, the others being extractable only after reducing and alkylating treatments. This modification of solubility of Z1, Z2 and S4 corresponded to the oxidation of cysteine residues to form ---S---S--- crosslinks in chromatin of mature sperm cells. Thus spermiogenesis of the dogfish shows two basic nuclear protein transitions which both occur during nuclear elongation.  相似文献   

12.
Spermatogenic cells isolated from prepubertal and adult mice by unit gravity sedimentation have been used to examine proteins synthesized in a stage-specific manner throughout meiosis and early spermiogenesis. Preleptotene, leptotene/zygotene, and pachytene spermatocytes were isolated from 17-day-old mice. Adult pachytene spermatocytes and round spermatids were isolated from mature animals. These germ cells were then cultured in defined medium with [35S]methionine [( 35S]met) for 4-5 h. For each cell type, relative [35S]met incorporation was determined and labeled proteins were compared by two-dimensional (2D) polyacrylamide gel electrophoresis and autoradiography. Levels of [35S]met incorporation by isolated germ cells correlate closely with previous autoradiographic estimates of protein synthesis during spermatogenesis (Monesi, 1967). Pachytene spermatocytes from prepubertal mice incorporate the highest levels of [35S]met, when expressed either as cpm/-10(6) cells or cpm/mg protein. Comparisons of 2D autoradiograms indicated that many proteins, including actin and tubulins, are synthesized at approximately equal levels in all stages examined. Other proteins, including heat-shock proteins and multiple plasma membrane constituents, are synthesized in a stage-specific manner in leptotene/zygotene spermatocytes, pachytene spermatocytes, and round spermatids. These studies define conditions for monitoring protein synthesis in isolated spermatogenic cells prior to the pachytene stage of meiosis, provide a 2D map of proteins synthesized at these earlier meiotic stages, and examine the synthesis of several proteins previously identified on 2D gels with biochemical and immunological methods.  相似文献   

13.
Expression of a novel histone 2B during mouse spermiogenesis   总被引:5,自引:0,他引:5  
  相似文献   

14.
Spermatogenesis is a complex differentiation process which is characterised, among other features, by conspicuous stage-specific nuclear events such as the pairing of homologous chromosomes coupled with the formation of synaptonemal complexes, the replacement of histones with sperm-specific proteins during spermiogenesis and, as a result, chromatin condensation and its inactivation in sperm cells. The chromatin of spermatogenic cells undergoes dramatic conformational changes upon differentiation from spermatogonia to mature spermatozoa. During the haploid stage of spermatogenesis, histones are gradually replaced, firstly by transition proteins and later by sperm-specific proteins. As a result of the high degree of condensation and inactivation of spermatid and sperm chromatin, Sertoli cells are responsible for the nourishment of germ cells with ribosomal RNA and nutritive substances.  相似文献   

15.
It has been widely accepted that mammalian sperm acrosin is first synthesized only in the postmeiotic stages of spermatogenic cells. In this study, we carried out Northern blot analysis of RNAs prepared from purified populations of mouse spermatogenic cells. The acrosin mRNA was obviously found in meiotic pachytene spermatocytes, and the mRNA content markedly increased in postmeiotic round spermatids. Also, the acrosin mRNA in pachytene spermatocytes was functionally associated with polysomes. These results provide evidence that acrosin biosynthesis is already started in meiotic cells and continues through the early stages of spermiogenesis.  相似文献   

16.
Ultrastructural and cytochemical studies were carried out on nuclear changes and acrosome formation during the spermiogenesis of the phytophagous bug Euchistus heros. The development of the nucleus involves changes in the shape and in degree of chromatin condensation: initially it is dispersed and with a low-electron density, then assumes a fibrillar arrangement and finally compacts in an electron-dense material. The acrosome is formed by the Golgi complex and presents unusual morphological features during its development. The reaction product of acid phosphatase, glucose-6-phosphatase and thiamine pyrophosphatase activities were detected during various stages of acrosome development. In contrast, residues of alpha-N-acetylgalactosamine and basic proteins were only reported in the intermediate and late stages of the differentiation process, respectively.  相似文献   

17.
DNA-staining of hamster testis cell suspensions followed by flow cytometry demonstrated appearance of the first haploid cells at 23 days post partum (dpp) and of condensed chromatin (in elongated spermatids and spermatozoa) at 33-34 dpp. Mature spermatozoa were first observed in the caput epididymis at 36-37 dpp, thus completing the first spermatogenic wave. Testicular cell suspensions from animals from 23 to 38 dpp were stained with acridine orange, and flow cytometer gating was adjusted to include only the haploid cells. Acridine orange intercalated into double-stranded DNA to produce green fluorescence. The decrease in green fluorescence intensity from 23 until 37 dpp was caused by changes in the binding of DNA to basic proteins in such a fashion as to impede the access of the dye to the DNA double helix. When the green fluorescence values (of the most advanced spermatids) were plotted against the age of the hamsters (in dpp) or the corresponding steps of spermiogenesis, the decrease in fluorescence could be seen to occur in three phases. The inflection point between the first and second phases was observed at about spermiogenesis step 7, consistent with the hypothesis that this represents removal of histone from the chromatin. The second phase presumably represents the period in which transition proteins are bound to the DNA. At approximately steps 15 or 16 a further inflection point was seen where protamines replaced the transition proteins. The red fluorescence produced when acridine orange bound to RNA in spermatids, increased early in spermiogenesis and decreased dramatically at 34 dpp, consistent with the fact that elongating spermatids discard the bulk of their cytoplasm during the maturation process.  相似文献   

18.
The correlations between the germ cell population and the blood-testis barrier were studied during puberty and throughout the reproductive cycle in a seasonal breeder, the mink. A classification of 12 stages, corresponding to the cellular associations appearing during the cycle of the seminiferous epithelium, was proposed and used to identify the stages of the cycle in pubertal mink. In adult mink, the reproductive cycle was divided into two spermatogenic phases--an active phase lasting 9 months, and an inactive phase lasting 3 months. The active spermatogenic phase was broken down into three distinct periods: the first spermatogenic wave, the peak of spermatogenic activity, and the last spermatogenic wave. Degenerating germ cells were found in comparable and relatively low proportions during puberty and during the first and last spermatogenic waves of the adult reproductive cycle. The permeability of the blood-testis barrier to intravascularly infused electron-opaque tracers (i.e., horseradish peroxidase and lanthanum) was tested at the time of the first spermatogenic wave at puberty and throughout the reproductive cycle of the adult. The relationship between epithelial permeability and germ cell populations prevailing during puberty and during the first and last spermatogenic waves of the adult active phase was the same. During puberty, the establishment of the blood-testis barrier did not coincide with the appearance of a particular step of meiosis but was correlated with the development of a tubular lumen. In adult mink, the barrier cyclically decayed during the last wave of the active spermatogenic phase and reformed during the first wave of the next active phase. The decay and the reformation of the barrier were not coincident with the appearance or disappearance of a particular generation of the germ cell population from the seminiferous epithelium but were correlated with cyclic cytological changes in Sertoli cells and the rhythmic development and occlusion of the lumen. During the peak months of the active spermatogenic phase, however, a blood-testis barrier secluded spermatogonia and young spermatocytes from older generations of germ cells. It is concluded that during puberty and also during the first and last spermatogenic wave of the adult mink reproductive cycle, the development of germ cells is possible in the absence of a competent, impermeable blood-testis barrier, and the transient presence of a permeable epithelial barrier does not initiate an autoimmune response of sufficient magnitude to cause destruction of the seminiferous epithelium.  相似文献   

19.
Immunohistochemical localization of a calmodulin-dependent protein phosphatase, calcineurin, was studied in the mouse testis in relation to previous observations showing that calmodulin is unusually rich in spermatogenic stages from mid-pachytene spermatocytes to elongating spermatids. The antibodies raised against calcineurin from scallop testis reacted with subunit B, but not subunit A, of calcineurin isoforms from mouse brain and testis. Indirect immunofluorescence using these antibodies on the mouse testis revealed positive reactions only in the nuclei of round or elongating spermatids: calcineurin started to accumulate in nuclei from the acrosomal cap phase, peaked at the initial stage of nuclear elongation, and decreased thereafter. There was almost no signal in the cytoplasm; spermatogenic cells at other stages, including spermatogonia, spermatocytes, mature sperm, and other somatic cells in the seminiferous tubules were totally negative. Immuno-electron microscopy gave the same result, on the basis of measuring the density of immunogold particles. These results suggest a role for calcineurin in remodeling of the nuclear chromatin in metamorphosing spermatids.  相似文献   

20.
Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are approximately 50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号