首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vitrinids, which represent a probably competitively inferior transitional stage between shelled snails and slugs, and their sister group, the limacoid slugs, are used to investigate a macroevolutionary effect of a microevolutionary process, competition between individuals resulting in ecological displacement of one clade by another, based on patterns in the present-day world. The activity period and the altitudinal distribution of the vitrinids has shifted - to the cold season or to higher altitudes, respectively - in those regions where their range overlaps with that of the limacoid slugs. The diversity of the vitrinids is lower in regions with limacoid slugs. These patterns can be ascribed to the ecological displacement or the exclusion of the vitrinids from some habitats by limacoid slugs. Two vitrinid clades which independently colonized regions without limacoid slugs show patterns attributable to ecological release. The ecological displacement or exclusion of the vitrinids by the slugs is probably due to competition for shelter.  相似文献   

2.
We have incorporated an additional 56 species of land snails and slugs in our ribosomal (r) RNA molecular phylogeny. The new taxa include representatives of several important groups. The molecular tree now includes 160 species of stylommatophoran land snails and slugs in 144 genera in 61 families. In the rDNA tree, the Stylommatophora are principally divided into an 'achatinoid' and a 'non-achatinoid' clade. Within these clades, several major land snail groups, including the Orthurethra, Elasmognatha, Limacoidea, and Helicoidea, are supported. Overall, the rDNA molecular phylogeny has remained stable following the incorporation of the additional taxa, with these additions having little impact on the major evolutionary patterns in the tree. Taxonomic coverage of the Orthurethra, Orthalicidae, Camaenidae, and Bradybaenidae is increased significantly. The camaenids and bradybaenids form a complex, and both appear to be paraphyletic. Several families of uncertain affinity, such as the Sagdidae and Thyrophorellidae, are included for the first time. The Sagdidae are shown to belong to the Helicoidea, and the Thyrophorellidae to the Achatinoidea.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 593–610.  相似文献   

3.
Phylogenetic relationships among nine genera and 28 species of the southern African tribe Podalyrieae were estimated from sequences of the internal transcribed spacer (ITS) of nuclear ribosomal DNA as well as morphological and chemical data. Morphological and ITS sequence data produced cladograms with similar topologies, both supporting the monophyly of Podalyrieae (excluding Hypocalyptus ). The combined data sets indicate that subtribe Xiphothecinae are monophyletic, but embedded within Podalyriinae. The high degree of congruence between previous taxonomic hypotheses and those based on DNA data provides further evidence for the utility of ITS sequences in studying phylogeny.  © 2002 The Linnean Society of London , Botanical Journal of the Linnean Society , 2002, 139 , 159–170.  相似文献   

4.
A phylogenetic analysis of plastid rbcL DNA sequences for 20 species of Vitaceae s.l. (including Leeaceae) and eight outgroups from Dilleniaceae and Santalales is presented. Patterns of floral and vegetative morphology and ontogeny within the family are compared to the phylogenetic trees produced. Despite the limited sampling of large and variable genera, there is a good correspondence with hypothesized floral and vegetative ontogenetic trends, with Leea and Ampelopsis ancestral, Cissus and Ampelocissus intermediate and Vitis most derived. A clade containing Parthenocissus , Tetrastigma , Cyphostemma and Vitis is found in all shortest trees. Cyphostemma and Parthenocissus are shown to be closely related to Vitis , to which clade Tetrastigma and Cayratia comprise the sister clade. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 421–432.  相似文献   

5.
We investigated sperm cells and spermatophores of four species of Old World freshwater crabs belonging to three different genera of the subfamily Potaminae (family Potamidae). Characters previously believed to be apomorphic for the potamid subfamily Potamiscinae were also found to occur in the Potaminae. To infer the morphological ancestral character state combination of the Potamidae, ancestral character state analysis of four different sperm traits was performed, based on a 16S rDNA phylogeny of the investigated species. Comparing molecular phylogeny and character state distribution, several cases of convergent evolution could be identified. The densely packed, coenospermic spermatophores and the occurrence of a ‘tongue‐and‐groove’ connection between operculum and acrosomal zones are probably apomorphies for the whole Potamidae. The spermatozoa of Socotrapotamon socotrense show several unique characters. We also analysed the evolution of acrosome size. The sperm cells of the Potamidae and their sister‐group Gecarcinucidae only slightly overlap in acrosome size. Within the investigated species, the ‘East Asia’ subclade (subfamily Potamiscinae) developed significantly larger acrosomes than the subfamily Potaminae. Our results suggest that the use of brachyuran acrosome morphology for phylogenetic inference at the family level is strongly affected by small sample size, and by convergent character evolution. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

6.
A phylogenetic analysis of the majority of sparid genera and representatives of the sparoid families Centracanthidae, Lethrinidae and Nemipteridae is presented using 87 predominately osteological characters. The Sparidae constitute a monophyletic grouping, with the inclusion of the centracanthid Spicara smaris , which nests deep within the ingroup. The phylogeny was then used to investigate agreement with the most recent molecular study, taxonomic stability of subfamilial classification and the evolution of feeding strategies. Results show that the incongruence between morphological and molecular data appears largely to be an artifact of errors in rooting. However, there appears to be real and substantial conflict between the molecular tree and the morphological data, which is not attributable to the different positions of the least congruent taxa. The data support the molecular hypothesis that none of the subfamilial classification, based on dentition and trophic specialization, is monophyletic, and should be rejected pending further taxonomic revision. The phylogeny supports multiple independent origins of trophic types and it is suggested that the evolutionary plasticity of the oral teeth of sparids has been fundamental to the adaptive radiation of this family compared to their closest allies. ©2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 269–301.  相似文献   

7.
The evolutionary history of bioluminescence and iridescence in myodocopid ostracods was estimated by phylogenetic analysis of mitochondrial 16S ribosomal RNA sequences. The inferred phylogeny of the myodocopids suggests that the common ancestor of Myodocopida evaluated in this study exhibits iridescence. This type of light emission was once lost and recaptured independently in the descendant lineages. Bioluminescent species also evolved from non-luminous ancestral species. In the suborder Myodocopina, all the bioluminescent species form a monophyletic group, suggesting that bioluminescence evolved only once. Structural differences between two bioluminescent groups in the order Myodocopida suggests independent origins for bioluminescence.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 449–455.  相似文献   

8.
The phylogeny of Cyperus and allied genera has been reconstructed using cladistic analysis of plastid rbcL gene, rps16 intron, trnL intron, and trnL-F intergenic spacer sequence data in 40 species of tribe Cypereae. Cyperus s.s. as currently circumscribed is not monophyletic because ten cyperoid genera are embedded within it. Eucyperoid Cyperus species (with a C3 anatomy, e.g. C. involucratus ) and the genera Courtoisina , Kyllingiella and Oxycaryum form a clade that is sister to a clade comprising chlorocyperoid species (with a C4 anatomy, e.g. C. papyrus ) and the genera Alinula , Ascolepis , Kyllinga , Lipocarpha , Pycreus , Remirea and Sphaerocyperus . The position of two species is uncertain; C . tenellus is resolved in a clade together with Isolepis although with typical cyperoid spikelets, whereas I. humillima is not resolved near either Isolepis or Cyperus s . l . © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 138 , 145–153.  相似文献   

9.
Batesian mimicry, in which a palatable organism resembles an unpalatable model, is widespread among taxa. Batesian mimics can be classified based on their level of accuracy (inaccurate or accurate). Using data on defensive strategies in more than 1000 species of spiders I investigated whether inaccurate myrmecomorphy is ancestral to accurate myrmecomorphy. I classified 233 myrmecomorphic species into four accuracy levels based on morphology, from poor inaccurate mimics to very accurate ones. I found that myrmecomorphy has evolved independently in 16 families and 85 genera. On the family‐level phylogeny, the occurrence of myrmecomorphy is confined mainly to families branching later on the tree, from the RTA clade. On the generic‐level phylogenies in Corinnidae and Salticidae, myrmecomorphy is not only of derived origin. Estimated ancestral state was non‐mimetic in Salticidae and poor inaccurate myrmecomorphy in Corinnidae. Thus, inaccurate myrmecomorphic spider mimics seem rather ancestral to accurate but additional analysis on species‐level phylogenies is needed to support this conclusion. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 97–111.  相似文献   

10.
Results for nuclear ITS sequences were combined with previously obtained data from cpDNA restriction site studies to provide a comprehensive molecular phylogeny for subtribe Helianthinae. Results from the two molecular data sets were mostly congruent for basally diverging branches of the subtribe. Based on the results, combined with morphological observations, the basally diverging branches are placed in six genera, including one newly described. Bahiopsis is resurrected to accommodate species previously placed in Viguiera subgenus Bahiopsis . Calanticaria is newly proposed for the five species of Viguiera ser. Brevifolieae . Heliomeris is retained for the group sometimes included within Viguiera as sect. Heliomeris . Hymenostephium is revived and enlarged to include a number of species of similar habit and involucre, including members of Viguiera sect. Diplostichis , Haploca-lymma and Garcilassa . Although cpDNA results place the morphologically distinctive Sclerocarpus within the clade including species of Hymenostephium , the ITS data were consistent with morphology in suggesting it to be a distinctive lineage.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 65–76.  相似文献   

11.
The evolutionary relationships of the Recent Pterioidea are inferred from a phylogenetic analysis of representatives of all pterioidean genera based on original observations of anatomy and shell morphology, and an extensive survey of bivalve literature. The well-resolved cladogram supports monophyly for the superfamily, but renders all but one family (the monotypic Pulvinitidae) polyphyletic. In addition, these results reveal a considerable level of convergence and parallelisms through the Pterioidea. The branching order of pterioid genera in the morphological analysis is largely corroborated by the sequence of their appearance in the fossil record. The palaeontological evidence provides important information on dating lineage splitting events and transitional taxa. The proposed phylogeny integrates the cladistic analysis of the Recent Pterioidea with the fossil record and suggests that the crown-group pterioideans probably originated in the Triassic from the Bakevelliidae, an extinct paraphyletic stem group from which the Ostreoidea are also ultimately derived.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 148 , 253–312.  相似文献   

12.
Although Drosophila melanogaster is a paradigm eukaryote for biology, relationships of this species and the other 174 species in the melanogaster species group are poorly explored and ambiguous. Gene regions of Cytochrome oxidase II (mt:CoII ), Alcohol dehydrogenase ( Adh ) and hunchback ( hb ) were sequenced and analysed phylogenetically to test prior hypotheses of relationships for the group based on chromosomes, morphology, and 28S rRNA gene sequences. A simultaneous cladistic analysis of the three newly sequenced gene regions produced a single well-resolved phylogeny for 49 exemplar species representing eight subgroups. Monophyly of each of the ananassae , melanogaster , montium , and takahashii subgroups is supported; the suzukii subgroup is polyphyletic. This phylogeny is consistent with variation in significant morphological structures, such as the male sex comb on the fore tarsus. The broad range of morphological variation among these species is interpreted and the applicability to evolution and developmental investigations is discussed. This phylogeny facilitates comparative investigations, such as gene family evolution, transposable element transmission, and evolution of morphological structures. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 21–37.  相似文献   

13.
The cranial morphology of Lemur catta and of the five species of the genus Eulemur is investigated here by landmark identification and Procrustes superimpositions. This geometrical morphometric method makes it possible to describe pure shape differences independent of size effects, and to quantify differences between specimens. The aim of this study is to determine whether the morphological disparity of lemur skulls is constrained by the environment and/or by the group's phylogenetic history. First, Procrustes residuals are analysed by principal component analysis and the scatter-plots interpreted against the geographical distributions of taxa to determine whether morphology is correlated with geography. Then, a morphological distance tree is computed and compared with various cladograms reported in the literature to test for any correlation between morphology and phylogeny. Morphological disparity is found to be closely correlated with geographical distribution but independent of phylogeny. This confirms that the morphological disparity of lemur skulls is associated with a high degree of homoplasy, probably as a result of ecological constraints.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 577–590.  相似文献   

14.
Studies in the areas of comparative morphology and palynology of the genus Cyclamen L. (Primulaceae) are outlined, and used in combination with observations and analyses of past works and publications and of field data (gathered by the Cyclamen Society and others) to generate new data sets. These are subject to cladistic parsimony analysis for the entire genus, and to phenetic ordinal analysis for subgenus Gyrophoebe O.Schwarz, to reach a conclusion on the validity of the latter classification, and the separation of taxa within it. A phylogeny and subgeneric reclassification is proposed with the reinstatement of Cyclamen elegans Boiss. & Buhse at species level based on the results gathered. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 473–481.  相似文献   

15.
Ecological diversification and phylogeny of emydid turtles   总被引:4,自引:0,他引:4  
Ecological diversification is a central topic in ecology and evolutionary biology. We undertook the first comprehensive species-level phylogenetic analysis of Emydidae (an ecologically diverse group of turtles), and used the resulting phylogeny to test four general hypotheses about ecological diversification. Phylogenetic analyses were based on data from morphology (237 parsimony-informative characters) and mitochondrial DNA sequences (547 parsimony-informative characters) and included 39 of the 40 currently recognized emydid species. Combined analyses of all data provide a well-supported hypothesis for intergeneric relationships, and support monophyly of the two subfamilies (Emydinae and Deirochelyinae) and most genera (with the notable exception of Clemmys and Trachemys ). Habitat and diet were mapped onto the combined-data tree to test fundamental hypotheses about ecological diversification. Using continuous coding of ecological characters showed that lineages changed in habitat before diet, ecological change was most frequently from generalist to specialist, and habitat and diet rarely changed on the same branch of the phylogeny. However, we also demonstrate that the results of ancestral trait reconstructions can be highly sensitive to character coding method (i.e. continuous vs. discrete). Finally, we propose a simple model to describe the pattern of ecological diversification in emydid turtles and other lineages, which may reconcile the (seemingly) conflicting conclusions of our study and two recent reviews of ecological diversification.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79, 577–610.  相似文献   

16.
Cymbideae comprise an assemblage of 28 genera nearly all of which are represented in this study. Their anatomy is relatively homogenous with the exception of Govenia , in which roots lack velamen and pseudobulb vascular bundles lack sclerenchyma, conditions that do not obtain in other genera. Marginal fibre bundles in leaves of Grammatophyllum and Porphyroglottis consist of clusters of thicker-walled, narrower, epidermis-facing fibres as well as thinner-walled, wider, mesophyll-facing fibres. This feature also occurs in some species of Maxillaria . Baculate tilosomes appear in the roots of a majority of genera in Cymbidieae, as they do in species of Maxillaria , confirming DNA analyses showing a close relationship between tribes Cymbidieae and Maxillarieae. Govenia is singled out both on anatomical and molecular grounds as being ill-placed in Cymbidieae. Cladistic analysis produces only a few tentative hypotheses of phylogenetic relationships among the 28 genera, showing that anatomical characters are of limited value in assessing affinities within this tribe. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 1–27.  相似文献   

17.
The diversity of items consumed by modern didelphids, varying from mostly fruits in Caluromys Allen to mostly small vertebrates in Lutreolina O. Thomas, may cause changes in molar size and shape. We evaluated the morphometric variation of the first and third upper and lower molars of 16 genera of didelphid marsupials, with the aim of assessing the relationship between molar shape change, diet and phylogeny. We used a geometric morphometric approach to analyse how shape changes with diet. We mapped shape onto the phylogeny of the group to reconstruct ancestral states and analyse the evolution of molar shape. Finally, we statistically estimated the effect of size, diet and phylogeny on molar shape. All the analyses indicated little correlation between diet and molar shape and a strong correlation between the position of each genus on the phylogeny and molar shape. We believe that the wide ecological niche used by most of the groups (at least regarding diet) makes the evolutionary changes not strong enough to override pre‐existing differences that occur among clades, and the absence of highly diet‐specialized species (e.g. hypercarnivory or obligate folivory) causes the need for retaining a molar shape that can be useful to process different kinds of food items. © 2014 The Linnean Society of London  相似文献   

18.
The classification of the Neotropical genera of the Ennominae is reviewed and 267 genera are recognised to occur in this region. Three new genera are described and three others are reinstated, while 48 generic synonyms are newly established. Other changes established in this work include 14 species synonyms and 237 new or reinstated combinations. External features and genitalia of representative members of the genera are illustrated (753 figures). All the known Neotropical species and subspecies of Ennominae are listed ( c . 3470), plus their synonyms. The tribes to which the genera belong are assessed, with c . 200 of the genera assigned to tribe or other suprageneric grouping.  © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 135 , 121–401.  相似文献   

19.
Stingless bees (Meliponini) are one of only two highly eusocial bees, the other being the well studied honey bee (Apini). Unlike Apini, with only 11 species in the single genus Apis, stingless bees are a large and diverse taxon comprising some 60 genera, many of which are poorly known. This is the first attempt to infer a phylogeny of the group that includes the world fauna and extensive molecular data. Understanding the evolutionary relationships of these bees would provide a basis for behavioural studies within an evolutionary framework, illuminating the origins of complex social behaviour, such as the employment of dance and sound to communicate the location of food or shelter. In addition to a global phylogeny, we also provide estimates of divergence times and ancestral biogeograhic distributions of the major groups. Bayesian and maximum likelihood analyses strongly support a principal division of Meliponini into Old and New World groups, with the Afrotropical+Indo‐Malay/Australian clades comprising the sister group to the large Neotropical clade. The meliponine crown clade is inferred to be of late Gondwanan origin (approximately 80 Mya), undergoing radiations in the Afrotropical and Indo‐Malayan/Australasian regions, approximately 50–60 Mya. In the New World, major diversifications occurred approximately 30–40 Mya. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 206–232.  相似文献   

20.
Studies of the role of flight in vertebrate evolution often have focused on the propatagial muscle complex because this structure forms the wing's leading edge. However, historical narratives about the evolution of flight anatomy are compromised because traditional higher-level taxonomies typically are based in part on the propatagium itself. To avoid this circularity, I used a consensus molecular phylogeny to examine propatagial evolution in the highly aerial sister groups, hummingbirds and swifts (Apodiformes). Mapping of anatomy on molecular-based phylogeny indicates that structural variation in M .  tensor propatagialis pars brevis (TPB) is congruent with the major subclades of both hummingbirds and swifts. However, the humeral tendon and broad attachment of the fleshy belly of TPB with M .  extensor metacarpi radialis (EMR) most likely underwent parallel change in hummingbirds and swifts, while the distal tendon present only in hummingbirds changed from a thin sheet to a strong tendon. The combination of divergent (within hummingbirds or swifts) and parallel (between hummingbirds and swifts) evolutionary patterns implies that the taxonomic value of the propatagial complex in apodiformes depends on anatomical component and level of divergence. The congruence of anatomy with molecular phylogeny provides independent criteria for designating relatively ancestral versus derived clades of apodiformes. Based on these polarities, living hummingbirds and swifts express additional parallel trends from arboreal to more aerial foraging styles, and from depauperate to species-rich clades. Within apodiformes, the link of flight anatomy with taxonomic and ecologic diversity suggests that elaboration of locomotor modes was important for apodiform diversification, echoing a similar pattern for birds relative to their reptilian ancestors.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 211–219.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号