首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of oligomeric derivatives of prostaglandin E1 were synthesized, a free-acid type and a lipophilic ester type. Neither compound inhibited sickling of red blood cells from sickle cell anaemia patients. However, both were found to inhibit the in vitro formation of dehydrated, dense cells (DC) caused by repeated cycles of sickling and unsickling of sickle cells. Both inhibited the formation of DC in a dose-related manner, but the ester type compound was more effective than the acid-type compound. Concentrations at which these compounds inhibit the DC formation by 50% were 5.2 microM and 40 microM for ester and free-acid compounds, respectively. A possible inhibition mechanism is discussed.  相似文献   

2.
At the physiological pH 7.4, the zeta potential of the normal red blood cell in 1.5% glycine buffer was found to be ?52 mv, whereas that of sickling erythrocytes is ?45 mv. Addition of spermidine to normal red blood cells reduced the zeta potential by approximately 20 mv. In sickling red blood cells, where the polyamine content is determined to be 5 to 6 times greater than in the normal erythrocyte, addition of spermidine reduced the zeta potential by only 5 mv, indicating that little more polyamine binding occurs. The polyamine content of whole blood taken from 24 patients having sickle cell anemia was found to be more than ten times that of whole blood from normal donors. Binding of polyamines to the normal red blood cell was analyzed from the surface charge potential variation as a function of polyamine concentration and the apparent binding constant determined to be 130 d1/g. The difference in the electrokinetic properties of normal and sickling red blood cells in this system may be attributed, in part, to a variation in the polyamine content of the two types of erythrocytes.  相似文献   

3.
Phenylalanine or tryptophan was incorporated into AA and SS red blood cells by a liposomal transport system which was previously shown by Kumpati to inhibit and reverse sickling of intact SS red blood cells in vitro. In the present study, the effect of phenylalanine or tryptophan incorporation on the rheological properties was evaluated. The incorporation of phenylalanine or tryptophan into red blood cells decreased the viscosity of deoxy SS red blood cells which reached a level close to that for normal red blood cells due to the antisickling effect. These results demonstrate that this liposomal transport system which transferred phenylalanine or tryptophan into intact red cells and did not have any adverse effect on red cell metabolism or function did correct the viscosity of deoxy SS red cells by its antisickling effect. This method may have significant therapeutic implications in the treatment of sickle cell disease.  相似文献   

4.
Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.  相似文献   

5.
A decrease in the reactivity of erythrocyte membrane (Ca2+ + Mg2+)-ATPase to calmodulin stimulation has been observed in aging red cells and in various types of hemolytic anemias, particularly in sickle red cell membranes. Unlike the aging process, the defect in the (Ca2+ + Mg2+)-ATPase from SS red blood cells is not secondary to a decrease in calmodulin activity and is already present in the least dense SS red blood cells separated on a discontinuous density gradient. Deoxygenated AS red cells were forced to sickle by lowering the pH, raising the osmolarity of the buffer (sickling pulse). Under these conditions an inhibition of the calmodulin-stimulated enzyme was observed only if several cycles of oxygenation/deoxygenation were applied. No alteration of the enzyme could be detected after submitting AS red blood cells to other conditions or in AA red blood cells submitted to the same treatments. This suggests that oxidative processes are involved in the alterations of the (Ca2+ + Mg2+)-ATPase activity. Treatment of membranes from AA erythrocytes by thiol group reagents and malondialdehyde, a by-product of auto-oxidation of membrane unsaturated lipids and a cross-linking agent of cytoskeletal proteins, led to a partial inhibition of the calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. We postulate that the hyperproduction of free radicals described in the SS red blood cells and involved in the destabilization of the membrane may be also responsible for the (Ca2+ + Mg2+)-ATPase failure.  相似文献   

6.
To study the effect of sickling on dimyristoylphosphatidylcholine (DMPC)-induced vesiculation, sickle (SS) red blood cells were incubated with sonicated suspensions of DMPC under either room air or nitrogen. Like normal red cells, when sickle cells were incubated with DMPC under oxygenated conditions, incorporation of DMPC into the erythrocyte membrane occurred, followed by echinocytic shape transformation and subsequent release of membrane vesicles. On the other hand, when SS cells were induced to sickle by deoxygenation, DMPC-induced vesiculation of these cells was dramatically reduced. However, upon reoxygenation, release of vesicles from these sickle erythrocytes occurred immediately. When SS cells were incubated under hypertonic (500 mosM) and deoxygenated conditions (where hemoglobin polymerization occurs but red cells do not show the typical sickle morphology), a similar decrease in the extent of vesiculation was observed. Experiments with radiolabelled lipid vesicles indicated that incorporation of DMPC into erythrocyte membranes occurred in all cases and therefore was not the limiting factor in the reduction of vesiculation in deoxygenated SS cells. Taken together, these results indicate that cellular viscosity and membrane rigidity, both of which are influenced by hemoglobin polymerization, are two important factors in process of vesicle release from sickle erythrocytes.  相似文献   

7.
The ability of an anti-sickling drug lawsone, 2-OH-1,4-naphthoquinone, and two related compounds to inhibit the haematoporphyrin-sensitised photohaemolysis of normal and sickle cell erythrocytes has been investigated. The compounds appear to protect the erythrocyte membranes by reaction with transient oxidative species. Differential effects between normal and sickle cells are shown and these are attributed to the different membrane composition of irreversibly sickled erythrocytes. This report describes a possible basis for the decreased formation of irreversibly sickled cells in the presence of lawsone.  相似文献   

8.
The ultimate goal of gene therapy for sickle cell anemia (SCA) is an improved phenotype for the patient. In this study, we utilized bone marrow from a sickle cell patient as a model of disease in an in vitro setting for the hyperactive Sleeping Beauty transposon gene therapy system. We demonstrated that mature sickle red blood cells containing hemoglobin-S and sickling in response to metabisulfite can be generated in vitro from SCA bone marrow. These cells showed the characteristic morphology and kinetics of hemoglobin-S polymerization, which we quantified using video microscopy and imaging cytometry. Using video assessment, we showed that delivery of an IHK-βT87Q antisickling globin gene by Sleeping Beauty via nucleofection improves metrics of sickling, decreasing percent sickled from 53.2 ± 2.2% to 43.9 ± 2.0%, increasing the median time to sickling from 8.5 to 9.6 min and decreasing the maximum rate of sickling from 2.3 x 10-3 sickling cells/total cells/sec in controls to 1.26 x 10-3 sickling cells/total cells/sec in the IHK-βT87Q-globin group (p < 0.001). Using imaging cytometry, the percentage of elongated sickled cells decreased from 34.8 ± 4.5% to 29.5 ± 3.0% in control versus treated (p < 0.05). These results support the potential use of Sleeping Beauty as a clinical gene therapy vector and provide a useful tool for studying sickle red blood cells in vitro.  相似文献   

9.
Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, “BK”-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, “SK”-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell. Accepted: 12 August 1999  相似文献   

10.
During the ageing process of normal red cells and in the formation of irreversibly sickled cells (ISCs) there is a progressive increase in the intracellular concentration of Ca2+. This is parallelled by the development of a variety of morphological and biochemical changes in older fractions of normal cells and in ISCs which are similar to those seen in normal cells exposed to Ca2+ ionophore. These changes include cell shrinkage, loss of membrane lipid and degradation of cytoskeletal proteins and polyphosphoinositides. In this paper we consider the ways in which the Ca2+-dependent biochemical changes may be related to the morphological alterations which are characteristic of ageing and irreversible sickling.  相似文献   

11.
When red blood cells from sickle-cell patients were exposed to repeated cycles of deoxygenation and reoxygenation (one cycle was 5 min), dehydration of the cells was observed after several cycles of the sickling-desickling process. These dehydrated cells still maintained a biconcave form after 1 h of such cycling, but they started to take the form of irreversibly sickled cells after several hours. If red cells were simply kept deoxygenated for 16 h, neither dehydrated cells nor irreversibly sickled cells were formed. The formation of dehydrated cells was inhibited either by elimination of Ca2+ from the medium, or by the increase of K+ concentration in the medium. Under conditions in which dehydrated cells were not formed, i.e., deoxygenation incubation (either in the absence or presence of Ca2+) or the deoxygenation-reoxygenation cycling in the absence of Ca2+, 15-25% of cellular K+ leaked out during 4 h of incubation. When dehydrated cells were formed in deoxygenation-reoxygenation cycling in the presence of Ca2+, 40-50% of K+ was lost in 4 h. Two different types of inhibitor were found. The first type includes inhibitors of the Ca2+-activated K+ efflux, such as quinine, quinidine or tetraethylammonium chloride. These compounds suppressed both the K+ efflux and the formation of dehydrated cells. The second type includes calmodulin-interacting drugs. For example, chlorpromazine (20 microM) inhibited the formation of dehydrated cells almost completely, even though it did not inhibit the K+ efflux remarkably. Several other calmodulin-binding drugs were found to inhibit the formation of dehydrated cells similarly, and the potency of these drugs to inhibit the formation seems to be related to the binding affinity of these drugs to calmodulin.  相似文献   

12.
We have previously demonstrated that an oxidative change, the formation of a disulfide bridge between two cysteine residues, in the membrane protein beta-actin is primarily responsible for locking the irreversibly sickled red blood cells (ISCs) of sickle cell anemic patients into the sickle shape. To support studies on biological and chemical characterization of the oxidized beta-actin and pharmacological research toward the reversal of the oxidation, we attempted to prepare oxidized beta-actin from normal red blood cell (RBC) beta-actin by a chemical reaction, expecting a product equivalent to that found in ISCs. 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB, or Ellman's reagent) was used for the oxidation. We proved the absence of accessible sulfhydryl groups in the oxidized product using liquid chromatography (LC) with both UV and fluorescence detection. Polymerization assays indicated that the chemically produced ISC actin demonstrated the same kinetics as ISC actin obtained from patients with sickle cell disease. The effect of the oxidation could be reversed by the use of the reducing agent tris(carboxyethyl)phosphine (TCEP).  相似文献   

13.
Abstract

Sickle cell disease is an inherited disease caused by point mutation in hemoglobin (β-globin gene). Under oxygen saturation, sickle hemoglobin form polymers, leading to rigid erythrocytes. The transition of the blood vessels is altered and initiated by the adhesion of erythrocytes, neutrophils and endothelial cells. Sickle Hemoglobin (HbS) polymerization is a major cause in red blood cells (RBC), promoting sickling and destruction of RBCs. Isoquercitrin, a medicinal bioactive compound found in various medicinal plants, has multiple health benefits. The present study examines the potential of isoquercitrin as an anti-sickle agent, showing a significant decrease in the rate of polymerization as well as sickling of RBCs. Isoquercitrin-induced graded alteration in absorbance and fluorescence of HbS, confirmed their interaction. A negative value of ΔG° strongly suggests that it is a spontaneous exothermic reaction induced by entropy. Negative ΔH° and positive ΔS° predicted that hydrogen and hydrophobic binding forces interfered with a hydrophobic microenvironment of β6Val leading to polymerization inhibition of HbS. HbS-Isoquercitrin complex exhibits helical structural changes leading to destabilization of the HbS polymer as confirmed by CD spectroscopy. MST and DSC results indicate greater changes in thermophoretic mobility and thermal stability of sickle hemoglobin in the presence of isoquercitrin, respectively. These findings were also supported by molecular simulation studies using DOCK6 and GROMACS. Hence, we can conclude that isoquercitrin interacts with HbS through hydrogen bonding, which leads to polymerization inhibition. Consequently, isoquercitrin could potentially be used as a medication for the treatment of sickle cell disease.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
PTHrP has important roles in lung development and function. Here we determined the vasomotor responses of isolated pulmonary arteries and veins of newborn and adult sheep to PTHrP. In vessels constricted with endothelin-1, PTHrP (PTHrP 1-34) caused greater relaxation of veins than of arteries. In both vessel types, relaxation to the peptide was less in adult than in newborn vessels. In newborn lambs, PTHrP-induced relaxation was not affected by endothelium removal, inhibition of eNOS, or inhibition of adenylyl cyclases by SQ-22536. However, relaxation was attenuated by 4-aminopyridine, inhibitor of voltage-dependent potassium channels, in both arteries and veins, and by charybdotoxin, inhibitor of calcium-activated potassium channels, in veins. When vessels were saturated with 8-BrcAMP (3 x 10(-4) M), to eliminate relaxation mediated by endogenous cAMP, PTHrP-induced relaxation was partially attenuated. In vessels treated with 8-BrcAMP (3 x 10(-4) M), 4-aminopyridine but not charybdotoxin inhibited relaxation induced by PTHrP 1-34 in both arteries and veins. Radioimmunoassay showed that, in the presence of a general phosphodiesterase inhibitor, PTHrP caused a concentration-dependent increase in intracellular cAMP content in arteries and veins, which was largely abolished by SQ-22536. Our results demonstrate that PTHrP is a potent vasodilator of pulmonary vessels, with a greater effect in veins than in arteries. Relaxation induced by the peptide contains both cAMP-dependent and -independent components. In both arteries and veins, voltage-dependent potassium channels mediate the response to PTHrP, at least in part, in a cAMP-independent fashion; and in veins, calcium-activated potassium channels may be stimulated by elevated cAMP levels.  相似文献   

15.
Dimethyl adipimidate (DMA) reduces K+ loss from, and dehydration of, red cells containing haemoglobin S (HbS cells). Three membrane transporters may contribute to these processes: the deoxygenation-induced cation-selective channel (Psickle), the Ca2+-activated K+ channel (or Gardos channel) and the K+-Cl cotransporter (KCC). We show that DMA inhibited all three pathways in deoxygenated HbS cells. The Gardos channel could be activated following Ca2+ loading. Considerable KCC activity was present in oxygenated HbS cells, showing a selective action of DMA on the transporter in deoxygenated cells. Inhibition of sickling correlated strongly with that of Psickle and moderately with that of KCC activity. We conclude that DMA does not inhibit the K+ pathways directly, but acts mainly by preventing HbS polymerisation and sickling. These findings are relevant to the development of novel chemotherapeutic agents for amelioration of sickle cell disease.  相似文献   

16.
Investigations of human red blood cells show that a cytoplasmic protein called calpromotin is involved in the regulation of calcium-activated potassium transport. Calpromotin associates with the membrane in the presence of calcium and undergoes a chemical transformation. High performance gel filtration and gel electrophoresis show that the cytoplasmic and membrane-bound calpromotin can exist in both low and high molecular weight forms. The biochemical properties of the high molecular weight membrane-bound calpromotin are not the same as the high molecular weight cytoplasmic calpromotin. The high molecular weight membrane forms of calpromotin are increased by leupeptin and diminished by iodoacetic acid. Therefore, the leupeptin enhancement and iodoacetic inhibition of calcium-activated potassium transport may involve the high molecular weight forms of membrane-bound calpromotin.  相似文献   

17.
Sickling, viscosity and gelling properties of the red cells and the hemoglobins of three Virginia white-tailed deer homozygous for types II and III (the sickling types) and V (the nonsickling type), respectively, have been analyzed. The sickling of erythrocytes of deer with type II or III is inhibited by urea and cyanate at concentrations which are comparable to those used in in vitro studies of red cells from patients with sickle cell anemia. No differences were observed between the viscosities of the three deer hemoglobin types at temperatures of 12 degrees C or above. High concentrations of deer hemoglobin types II and III gelled at 1 degree C and at pH values of 7.4-7.7; the minimum gelling concentration of type II was 33.5 g% and of type III was 38 g%. Gel formation was not observed at pH values between 6.7-7.1. Hemoglobin type V did not gel and prevented the formation of gels of type II and III in mixtures at pH 7.6-7.7.  相似文献   

18.
The investigation of two thermal properties of red cells throws some light on whether sickling is a process involving the crystallization of a relatively insoluble hemoglobin. These properties are the specific heat and the heat of compression, both of which would be expected to become numerically less if the hemoglobin of the red cell were to crystallize. In the case of paracrystalline rat red cells, which give spacings at 45 A and 58 A by x-ray diffraction, the specific heat is reduced to 85 per cent of that of the normal red cells, and the heat of compression is only about 75 per cent of that found for the normal red cell. In the case of the red cell sickled by a reduction of the O2 tension, the specific heat and the heat of compression are substantially the same as found for the normal red cell. This is an argument against sickling being the result of a crystallization process, and supports the observation that sickled cells do not give x-ray spacings. The result is compatible, on the other hand, with sickling being the result of the formation of an oriented and birefringent gel.  相似文献   

19.
To investigate the role of phenylalanine and tryptophane as potential antisickling agents in intact human SS-red blood cells a liposomal transport system was employed to transfer phenyl-alanine or tryptophane into intact SS-red blood cells. Aromatic amino acids and short peptides containing phenylalanine have been demonstrated to increase the minimum gelling concentration and solubility of deoxy-hemoglobin S in aqueous solution. However, these compounds do not cross the red blood cell membrane under usual incubation conditions. Incorporation of phenylalanine or tryptophane into intact SS-red blood cells via liposomal transport system markedly inhibited the invitro sickling of deoxy-hemoglobin S. These findings raise the possibility that a nontoxic liposomal transport system which facilitates incorporation of antisickling agents into intact SS-RBC may have significant therapeutic implications in the treatment of sickle cell disease.  相似文献   

20.
Cholesterol, phospholipid and sialic acid were measured in red cells from patients with sickle cell anemia to determine whether the cells had abnormal concentrations of these components and whether the amounts of these compounds differed in irreversibly sickled cells as compared to non-irreversibly sickled cells. Sickle cells had significantly higher levels of both lipids than similar populations of normal cells, however, comparisons to populations of young control cells showed that the differences were generally not significant. Sialic acid levels in sickle cells were not significantly different from normal cells. Irreversibly sickled cells had lower lipid and sialic acid concentrations than those not irreversibly sickled, but the differences were either not significant or did not occur when compared to young control cells. The studies show that the increased lipid concentrations in the membrane of sickle cells are not abnormal but are related to cell age and that the decrease in membrane components in irreversibly sickled cells is no greater than would be predicted for similarly aged populations of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号