首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At a specific temperature, elastin-like polypeptides (ELPs) undergo a sharp solubility transition that can be exploited in a variety of applications in biotechnology and medicine. The temperature of the transition varies with ELP sequence, molecular weight, and concentration. We present a single equation of three parameters that quantitatively predicts the transition temperature as a function of ELP length and concentration for an ELP of a fixed composition. This model should be useful both for the design of new ELP sequences that exhibit a desired transition temperature and for the selection of variables to trigger the phase transition of an ELP for a given application.  相似文献   

2.
类弹性蛋白(Elastin-like polypeptides,ELPs)是属于弹性蛋白中的一种且具有温控性的生物大分子,本文研究拥挤试剂对不同拓扑结构ELPs相变温度的影响,利用温控-紫外分光光度计研究其相变特性,结果发现,随着PEG2000浓度的增加,T-E-F的相变温度下降11.9~17.1℃;在固定Tadpole-like-E浓度下,随着PEG2000浓度的增加,Tadpole-like-E的相变温度降低11.5~16℃,其中,25 μmol/L的Tadpole-like-E其相变速度缓慢;ELPs浓度越大,其相变温度降低愈大,且PEG2000影响ELPs相变温度的趋势与ELPs的拓扑结构关系不大。另外,在简单的PBS缓冲溶液中加入PEG2000,可以使E-C在浓度<0.5 mol/L的Na2CO3中发生相变,且随着PEG2000浓度的增加,E-C相变温度逐渐降低。本研究为今后ELPs在复杂体系的应用提供前期的基础研究。  相似文献   

3.
本文利用SpyTag/SpyCatcher特性构建了三臂星型结构的类弹性蛋白多肽(elastin like polypeptides, ELPs),考察其在不同溶剂,如分子拥挤试剂、osmolytes及深共熔溶剂(deep eutectic solvents,DESs)中的相变温度及行为,并与含有相同ELPs重复数的线性ELPs120作对比。结果表明:在不同浓度拥挤试剂PEG2000作用下,两种结构的ELPs相变温度均降低,当其各自浓度均为25 μmol/L时,三臂星型ELPs相变温度降低3℃~13℃,而ELPs120相变温度仅降低1.5℃~10.8℃。此外,在添加PEG2000后,三臂星型ELPs相变缓慢;在不同类型和浓度的osmolytes溶液中,25 μmol/L三臂星型ELPs相变温度明显要比线性ELPs高8℃左右;在DESs体系中,三臂星型ELPs有类似与水溶液中的相变行为,且其相变温度受到抑制,另外三臂星型ELPs和ELPs120在DESs/PBS体系中,与在(氯化胆碱+尿素)/PBS体系中的相变行为一致,其中当DESs体积含量为50%,ELPs120相变温度是最低的。由于ELPs在非单一缓冲液体系中的相变行为不同,这丰富了ELPs作为纯化标签的应用,且在非单一缓冲液体系中因降低了相变温度,节约了纯化融合蛋白的经济成本,同时也为研究ELPs拓扑结构与其相变行为之间的关系奠定理论基础。  相似文献   

4.
Elastin-like polypeptides (ELPs) undergo a reversible, inverse phase transition. Below their transition temperature (Tt), ELPs are soluble in water, but when the temperature is raised above Tt, phase transition occurs, leading to aggregation of the polypeptide. We demonstrate a method for purification of soluble fusion proteins incorporating an ELP tag. Advantages of this method, termed "inverse transition cycling," include technical simplicity, low cost, ease of scale-up, and capacity for multiplexing. More broadly, the ability to environmentally modulate the physicochemical properties of recombinant proteins by fusion with ELPs will allow diverse applications in bioseparation, immunoassays, biocatalysis, and drug delivery.  相似文献   

5.
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.  相似文献   

6.
While elastin‐like polypeptides and peptides (ELPs) have been used for various stimulus‐responsive applications, details of their switching remain unclear. We therefore constructed a novel series of filamentous phage particles displaying a high surface density of short ELPs. The surface display of ELPs did not disrupt either particle shape or dimensions, and the resulting ELP‐phage particles were colloidally stable over several weeks. However, in spite of a saturating surface density, macroscopic aggregation of ELP‐phages cannot be triggered in water. To investigate the underlying mechanisms we examined conformational changes in the secondary structure of the phage proteins by circular dichroism and tryptophan fluorescence, which indicate partial protein unfolding in ELP‐phage particles. To gain further insight into the ELP itself, analogous “free” ELP peptides were synthesized and characterized. Circular dichroism of these peptides shows the onset of β‐type conformations with increasing temperature, consistent with the accepted view of the microscopic transition that underlies the inverse phase behavior of ELPs. Increased guest residue hydrophobicity was found to depress the microscopic transition temperature of the peptides, also consistent with a previously proposed intramolecular hydrogen‐bonding mechanism. Importantly, our results indicate that although the nanoscale presentation state can suppress macroscopic aggregation of ELPs, microscopic transitions of the ELP can still occur. Given the growing use of ELPs within supra‐molecular scaffolds, such effects are important design considerations for future applications. Biotechnol. Bioeng. 2013; 110: 1822–1830. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Elastin-like polypeptides (ELPs) are artificial polypeptides with unique properties that make them attractive as a biomaterial for tissue-engineered cartilage repair. ELPs are composed of a pentapeptide repeat, Val-Pro-Gly-Xaa-Gly (Xaa is any amino acid except Pro), that undergo an inverse temperature phase transition. They are soluble in aqueous solution below their transition temperature (T(t)) but aggregate when the solution temperature is raised above their T(t). This study investigates the rheological behavior of an un-cross-linked ELP, below and above its T(t), and also examines the ability of ELP to promote chondrogenesis in vitro. A thermally responsive ELP with a T(t) of 35 degrees C was synthesized using recombinant DNA techniques. The complex shear modulus of the ELP increased by 3 orders of magnitude as it underwent its inverse temperature phase transition, forming a coacervate, or gel-like, ELP phase. Values for the complex shear moduli of the un-cross-linked ELP coacervate are comparable to those reported previously for collagen, hyaluronan, and cross-linked synthetic hydrogels. Cell culture studies show that chondrocytes cultured in ELP coacervate maintain a rounded morphology and their chondrocytic phenotype, characterized by the synthesis of a significant amount of extracellular matrix composed of sulfated glycosaminoglycans and collagen. These results suggest that ELPs demonstrate great potential for use as in situ forming scaffolds for cartilaginous tissue repair.  相似文献   

8.
Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and length, which dictates their thermal properties. Elastin-like polypeptides are used in a variety of applications including biosensing, tissue engineering, and drug delivery, where the transition temperature and biopolymer architecture of the ELP can be tuned for the specific application of interest. Furthermore, the lower critical solution temperature phase transition behavior of elastin-like polypeptides allows their purification by their thermal response, such that their selective coacervation and resolubilization allows the removal of both soluble and insoluble contaminants following expression in Escherichia coli. This approach can be used for the purification of elastin-like polypeptides alone or as a purification tool for peptide or protein fusions where recombinant peptides or proteins genetically appended to elastin-like polypeptide tags can be purified without chromatography. This protocol describes the purification of elastin-like polypeptides and their peptide or protein fusions and discusses basic characterization techniques to assess the thermal behavior of pure elastin-like polypeptide products.  相似文献   

9.
The kinetics of aqueous two-phase system (ATPS) formation for elastin-like polypeptides (ELP) with defined chemical composition and chain length was investigated by dark field microscopy in an on-chip format with a linear temperature gradient. Scattering intensities from peptide solutions in the presence and absence of sodium dodecyl sulfate (SDS) were recorded as a function of temperature and time, simultaneously. It was found that the formation of the ATPS for three ELPs of different molecular weights (36 075, 59 422, and 129 856 Da) in the absence of SDS followed a coalescence mechanism, and the rate constant and activation energy were independent of chain length. With the introduction of SDS into the ELP solutions, the rate constants were attenuated more strongly with increasing chain length. Moreover, the coalescence process in the presence of SDS showed non-Arrhenius kinetics as a function of temperature. For the two shorter ELPs, ATPS formation occurred via coalescence at all SDS concentrations and temperatures investigated. On the other hand, the coalescence process was greatly suppressed for the longest ELP at elevated temperatures and higher SDS concentrations. Under these circumstances, ATPS formation was forced to proceed via a mixed Ostwald ripening and coalescence mechanism.  相似文献   

10.
Elastin-like polypeptides (ELPs) undergo a reversible, soluble-to-insoluble phase transition in aqueous solution upon heating through a characteristic transition temperature (T(t)). Incorporating a terminal ELP expression tag into the gene of a protein of interest allows ELP fusion proteins to be purified from cell lysate by cycles of environmentally triggered aggregation, separation from solution by centrifugation, and resolubilization in buffer. In this study, we examine the effect of ELP length on the expression and purification of a thioredoxin-ELP fusion protein and show that reducing the size of the ELP tag from 36 to 9 kDa increases the expression yield of thioredoxin by 4-fold, to a level comparable to that of free thioredoxin expressed without an ELP tag, while still allowing efficient purification. However, truncation of the ELP tag also results in a more complex transition behavior than is observed with larger tags. For both the 36 kDa and the 9 kDa ELP tag fused to thioredoxin, dynamic light scattering showed that large aggregates with hydrodynamic radii of approximately 2 microm form as the temperature is raised to above the T(t). These aggregates persist at all temperatures above the T(t) for the thioredoxin fusion with the 36 kDa ELP tag. With the 9 kDa tag, however, smaller particles with hydrodynamic radii of approximately 12 nm begin to form at the expense of the larger, micron-size aggregates as the temperature is further raised above the T(t). Because only large aggregates can be effectively retrieved by centrifugation, efficient purification of fusion proteins with short ELP tags requires selection of solution conditions that favor the formation of the micron-size aggregates. Despite this additional complexity, our results show that the ELP tag can be successfully truncated to enhance the yield of a target protein without compromising its purification.  相似文献   

11.
Elastin-like polypeptides (ELPs) have a distinctive thermal property, transition temperature (Tt), which leads to phase transition. This thermal property depends on the molecular weight (MW) of ELP, ELP concentration, composition of the amino acids constituting ELPs, and ionic strength of the aqueous solution. In order to investigate the effects of ELP length, ionic strength and existence of fusion protein, ELP genes of three different sizes were cloned using the recursive directional ligation (RDL) method and expressed in Escherichia coli. Following purification, thermal behaviors of ELPs were monitored using a spectrophotometer with temperature scanning. The results of our study indicated that Tt shifted to low in accordance with ELP length or increased ionic strength. Additionally, it was observed that Tt was affected by the physical properties of the protein fused with ELPs.  相似文献   

12.
D Carrier  M Pézolet 《Biochemistry》1986,25(14):4167-4174
The effect of poly(L-lysine) on dipalmitoylphosphatidylglycerol bilayers has been studied by Raman and infrared spectroscopies, small-angle X-ray diffraction, and carboxyfluorescein escape experiments. The polypeptide is shown to induce a stabilization of the bilayer detected by the increase of interchain vibrational coupling and a slight decrease of the overall disorder. In addition, long polylysine (Mr 150,000) induces a positive shift of the gel to fluid transition temperature and, at lipid to lysine molar ratios greater than 1, a lateral phase separation within the bilayer. Raman and infrared spectra indicate modifications at the head group level. In contrast, short polylysine (Mr 4,000) leads to a decrease of the lipid thermotropic transition temperature, and no modification of the polar head group and no phase separation could be observed. These differences between short and long polypeptides are correlated with the conformation the polypeptide adopts upon binding to the lipid, which favors the formation of alpha-helices in the case of long polypeptides (Mr greater than or equal to 14,000). The X-ray data suggest that the basic polypeptide acts as a bridge between neighboring bilayers, thus causing their aggregation and dehydration.  相似文献   

13.
D Puett  A Ciferri 《Biopolymers》1971,10(3):547-564
We have studied the effect of polypeptide concentration on the helix–coil transition of poly(γ-benzyl L -glutamate) (PBLG) in both dichloroacetic acid (DCA) and DCA–chloroform (CHF) mixtures. In agreement with other reports, we find the van't Hoff transition enthalpy to be strongly dependent on PBLG concentration. Also, an apparent effect of polypeptide concentration was noted on the transition temperature; however, corrections for finite PBLG concentration on the mole fraction of DCA seem to remove this effect. In order to explain our data, as well as some calorimetric data in the literature, we consider the transition free energy and enthalpy as a sum of three partial terms. These represent the thermodynamic parameters associated with: (1) conformational changes of the polypeptide, e.g. formation or disruption of intramolecular hydrogen bonds; (2) binding by the strong acid to the nonhelical segments of the polypeptide; (3) an overall (weak) interaction of the polypeptide with the nonbound solvent giving rise to dilution parameters that are dependent on the polypeptide conformation. The latter effect is generally ignored, since it is assumed that solvent interactions, other than specific binding, are similar for both the helical and the nonhelical conformation. Striking effects of water (small amounts) and solution aging on the formation of PBLG helices was observed. Water, as expected, acts as a helicogenic solvent when combined with DCA. The processes occurring during solution aging are not known, although the net effect is to stabilize the helical conformation. Finally, we present some rather unique thermally induced transitions of concentrated PBLG (about 200 mg/ml) in DCA. At low temperatures the soluble randomly coiled conformation is present. Heating produces first an isotropic gel, followed at higher temperatures by an isotropic solution consisting of about 70% α-helicity.  相似文献   

14.
A statistical mechanical theory of the helix-coil transition in sequential polypeptides is developed assuming that the statistical weights of the Zimm-Bragg parameters of a given residue depend on the type of adjacent residues. In the case of a sequential polypeptide consisting of two kinds of residues, the theory describes the helix- coil transition of the polypeptide in terms of the Zimm-Bragg parameters associated with the corresponding residues. The theory is then used to determine this parameter, as a function of temperature, from experimental data for transition temperature as a function of solvent composition, for a series of sequential polypeptides consisting of Glu(OBzl) and Lys(Chz) residues in mixtures of dichloroacetic acid and 1,2-dichlorethane. This parameter is then combined with the Zimm-Bragg parameters for the parent homopolypeptides, and the theory used to predict helix coil transition curves which are in good agreement with the experimental ones for the sequential polypeptides studied.  相似文献   

15.
We have investigated the folding of polyalanine by combining discontinuous molecular dynamics simulation with our newly developed off-lattice intermediate-resolution protein model. The thermodynamics of a system containing a single Ac-KA(14)K-NH(2) molecule has been explored by using the replica exchange simulation method to map out the conformational transitions as a function of temperature. We have also explored the influence of solvent type on the folding process by varying the relative strength of the side-chain's hydrophobic interactions and backbone hydrogen bonding interactions. The peptide in our simulations tends to mimic real polyalanine in that it can exist in three distinct structural states: alpha-helix, beta-structures (including beta-hairpin and beta-sheet-like structures), and random coil, depending upon the solvent conditions. At low values of the hydrophobic interaction strength between nonpolar side-chains, the polyalanine peptide undergoes a relatively sharp transition between an alpha-helical conformation at low temperatures and a random-coil conformation at high temperatures. As the hydrophobic interaction strength increases, this transition shifts to higher temperatures. Increasing the hydrophobic interaction strength even further induces a second transition to a beta-hairpin, resulting in an alpha-helical conformation at low temperatures, a beta-hairpin at intermediate temperatures, and a random coil at high temperatures. At very high values of the hydrophobic interaction strength, polyalanines become beta-hairpins and beta-sheet-like structures at low temperatures and random coils at high temperatures. This study of the folding of a single polyalanine-based peptide sets the stage for a study of polyalanine aggregation in a forthcoming paper.  相似文献   

16.
Makareeva E  Leikin S 《PloS one》2007,2(10):e1029
Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.  相似文献   

17.
We report herein the unexpected temperature triggered self-assembly of proteins fused to thermally responsive elastin-like polypeptides (ELPs) into spherical micelles. A set of six ELP block copolymers (ELP(BC)) differing in hydrophilic and hydrophobic block lengths were genetically fused to two single domain proteins, thioredoxin (Trx) and a fibronectin type III domain (Fn3) that binds the α(v)β(3) integrin. The self-assembly of these protein-ELP(BC) fusions as a function of temperature was investigated by UV spectroscopy, light scattering, and cryo-TEM. Self-assembly of the ELP(BC) was unexpectedly retained upon fusion to the two proteins, resulting in the formation of spherical micelles with a hydrodynamic radius that ranged from 24 to 37 nm, depending on the protein and ELP(BC). Cryo-TEM images confirmed the formation of spherical particles with a size that was consistent with that measured by light scattering. The bioactivity of Fn3 was retained when presented by the ELP(BC) micelles, as indicated by the enhanced uptake of the Fn3-decorated ELP(BC) micelles in comparison to the unimer by cells that overexpress the α(v)β(3) integrin. The fusion of single domain proteins to ELP(BC)s may provide a ubiquitous platform for the multivalent presentation of proteins.  相似文献   

18.
Treatment of glioblastoma is complicated by the tumors’ high resistance to chemotherapy, poor penetration of drugs across the blood brain barrier, and damaging effects of chemotherapy and radiation to normal neural tissue. To overcome these limitations, a thermally responsive polypeptide was developed for targeted delivery of therapeutic peptides to brain tumors using focused hyperthermia. The peptide carrier is based on elastin-like polypeptide (ELP), which is a thermally responsive biopolymer that forms aggregates above a characteristic transition temperature. ELP was modified with cell penetrating peptides (CPPs) to enhance delivery to brain tumors and mediate uptake across the tumor cells’ plasma membranes and with a peptide inhibitor of c-Myc (H1). In rats with intracerebral gliomas, brain tumor targeting of ELP following systemic administration was enhanced up to 5-fold by the use of CPPs. When the lead CPP-ELP-fused c-Myc inhibitor was combined with focused hyperthermia of the tumors, an additional 3 fold increase in tumor polypeptide levels was observed, and 80% reduction in tumor volume, delayed onset of tumor-associated neurological deficits, and at least doubled median survival time including complete regression in 80% of animals was achieved. This work demonstrates that a c-Myc inhibitory peptide can be effectively delivered to brain tumors.  相似文献   

19.
E Marchal 《Biopolymers》1974,13(7):1309-1316
The dielectric absorption of poly-DL -phenylalanine and poly-γ-benzyl-L -aspartate (PLAB) was measured in very dilute solutions to determine the type of molecular association and to locate the helix–coil transition. Both polypeptides were present as associated helices in chloroform. The mode of aggregation, which was determined by measuring the dipole moment and the critical frequency, did not depend on the polarity of the side chain but rather on that of the solvent. In both polymers, the dissociation of the aggregates in chloroform was observed on addition of small amounts of dichloroacetic acid; further addition of the acid lead to the helix–coil transition. No second region of dielectric absorption that might be related to the kinetics of the transition was found during the helix–coil transition of PBLA.  相似文献   

20.
This paper reports an improvement in the purification of thioredoxin (Trx) expressed from E. coli by inverse transition cycling (ITC) using cationic elastin-like polypeptides (ELPs). Two ELP libraries having 2% and 5% lysine residues and molecular weights ranging from 4 to 61.1 kDa showed greater salt sensitivity in their inverse transition behavior than purely aliphatic ELPs. Expression yield of Trx-ELP fusions was an unpredictable function of guest residue composition, but reducing the molecular weight of the ELP tag generally increased Trx yield. A cationic 4.3 kDa ELP is the shortest ELP used to purify any protein by ITC to date. A 15.9 kDa ELP with a guest residue composition of K:V:F of 1:7:1 was found to be the optimal cationic tag to purify Trx, as it provided 50% greater Trx yield and only required one-fifth the added NaCl for purification of Trx as compared to previously used aliphatic ELP tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号