首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the slave-making ant Protomognathus americanus, scout workers leave their colony, discover host colonies, and initiate slave raids. Captured host pupae subsequently emerge in the slavemaker colony and replenish the slave workforce. The course of these antagonistic encounters can be influenced by the species, aggressivity, or size of the host colony. We asked how the demography of parasite and host colonies influences the initial raiding phase by observing the scouting behaviour of P. americanus slavemakers during 48 raiding attempts. Experiments were performed under controlled laboratory conditions in a Y-shaped experimental arena. The number of active scouts increased with increasing slavemaker worker numbers, but was unaffected by the slave to slavemaker ratio, showing that slavemaker worker numbers are a good indicator for the scouting workforce. Colonies with fewer slaves discovered host colonies faster (colonies with 15 or less slaves: median 9:53 min, colonies with 42 or more slaves: median 18:55 min), suggesting that small slave workforces lead to intensified scouting behaviour. The more scouts were active, the faster a host colony was discovered, but the time between discovery and trial completion was unaffected by slavemaker colony demography. Host colonies were successfully attacked in 79.2 % of the trials, and they fought off an intruding scout only once. Yet host aggression towards slavemaker scouts increased with host colony size, and higher aggression rates delayed a subsequent attack. Our study demonstrates that colony size influences the behaviour and the course of crucial interspecific interactions of a social parasite and its host.  相似文献   

2.
Reciprocal selection pressures in host-parasite systems drive coevolutionary arms races that lead to advanced adaptations in both opponents. In the interactions between social parasites and their hosts, aggression is one of the major behavioural traits under selection. In a field manipulation, we aimed to disentangle the impact of slavemaking ants and nest density on aggression of Temnothorax longispinosus ants. An early slavemaker mating flight provided us with the unique opportunity to study the influence of host aggression and demography on founding decisions and success. We discovered that parasite queens avoided colony foundation in parasitized areas and were able to capture more brood from less aggressive host colonies. Host colony aggression remained consistent over the two-month experiment, but did not respond to our manipulation. However, as one-fifth of all host colonies were successfully invaded by parasite queens, slavemaker nest foundation acts as a strong selection event selecting for high aggression in host colonies.  相似文献   

3.
Animals are often threatened by predators, parasites, or competitors, and attacks against these enemies are a common response, which can help to remove the danger. The costs of defense are complex and involve the risk of injury, the loss of energy/time, and the erroneous identification of a friend as a foe. Our goal was to study the specificity of defense strategies. We analyzed the aggressive responses of ant colonies by confronting them with workers of an unfamiliar congeneric species, a non‐nestmate conspecific, a co‐occurring congeneric competitor species, and a social parasite—a slave‐making ant. As expected, the latter species, which can inflict dramatic fitness losses to the colony, was treated with most aggression. A co‐occurring competitor was also attacked, but the ants used different behaviors in their responses to both enemies. While the slavemaker was attacked by biting and stinging and was approached with spread mandibles, the competitor was dragged, a behavioral strategy only possible if the defending ant is similar in size and strength to the opponent. Non‐nestmate conspecifics were treated aggressively as well, but less than the slavemaker and the co‐occurring competitor, presumably because they are less easily recognized as enemies. An unfamiliar congeneric species was rarely attacked. This first detailed study comparing the aggressive responses of ant colonies toward slave‐making ants to other species posing different threats indicates that the responses of ant colonies are adjusted to the risk each opponent poses to the colony.  相似文献   

4.

Background

Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis.

Results

Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non-parasite intruders.

Conclusions

We used two different analyses of our behavioral data (standardized with the chemical distance between colonies or not) to test our hypothesis. Standardized data show behavioral differences which could indicate qualitative and specific parasite recognition. We finally stress the importance of considering the whole set of potentially interacting species to understand the coevolution between social parasites and their hosts.
  相似文献   

5.
Many parasites alter the behaviour of their host to their own advantage, yet hosts often vary in their susceptibility to manipulation. The ecological and evolutionary implications of such variation can be profound, as resistant host populations may suffer lower parasite pressures than those susceptible to manipulation. To test this prediction, we assessed parasite‐induced aggressive behaviours across 16 populations of two Temnothorax ant species, many of which harbour the slavemaker ant Protomognathus americanus. This social parasite uses its Dufour's gland secretions to manipulate its hosts into attacking nestmates, which may deter defenders away from itself during invasion. We indeed find that colonies that were manipulated into attacking their Dufour‐treated nestmates were less aggressive towards the slavemaker than those that did not show slavemaker‐induced nestmate attack. Slavemakers benefited from altering their hosts’ aggression, as both the likelihood that slavemakers survived host encounters and slavemaker prevalence in ant communities increased with slavemaker‐induced nestmate attack. Finally, we show that Temnothorax longispinosus colonies were more susceptible to manipulation than Temnothorax curvispinosus colonies. This explains why T. curvispinosus colonies responded with more aggression towards invading slavemakers, why they were less likely to let slavemakers escape and why they were less frequently parasitized by the slavemaker than T. longispinosus. Our findings highlight that large‐scale geographic variation in resistance to manipulation can have important implications for the prevalence and host preference of parasites.  相似文献   

6.
Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host''s nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites.  相似文献   

7.
Here we investigate the coevolutionary interactions between the slavemaking ant Protomognathus americanus and its Temnothorax hosts on a chemical level. We show that, although this social parasite is principally well-adapted to its hosts' cuticular hydrocarbon profile, there are pronounced differences in the fine-tuning of this adaptation. Between populations, chemical adaptation varies with host community composition, as the parasite faces a trade-off when confronted with more than one host species. In addition to adaptation of its own chemical signature, the slavemaker causes a reciprocal adjustment in its slaves' cuticular profile, the degree of which depends on the slave species. On the host side, successful parasite defence requires efficient enemy recognition, and in behavioural aggression trials, host colonies could indeed discriminate between invading slaves, which commonly accompany slavemakers on raids, and free-living conspecifics. Furthermore, hosts shifted their acceptance threshold over the seasons, presumably to reduce the costs of defence.  相似文献   

8.
The parasite pressure exerted by the slavemaker ant Protomognathus americanus on its host species Leptothorax longispinosus was analyzed demographically and genetically. The origin of slaves found in colonies of the obligate slavemaker was examined with nuclear and mitochondrial DNA markers to make inferences about the frequency and severity of slave raids. Relatedness of enslaved L. longispinosus workers in the same nest was very low, and our data suggest that, on average, each slavemaker nest raids six host colonies per season. Therefore, the influence of slavemaker species on their hosts is much stronger than simple numerical ratios suggest. We also found that slave relatedness was higher in small than in large slavemaker nests; thus, larger nests wield a much stronger influence on the host. We estimated that in the study population, on average, a host nest has a 50% chance of being attacked by a slavemaker colony per year. Free-living Leptothorax colonies in the vicinity of slavemaker nests did not represent the source of slaves working in P. americanus colonies, which suggests that raided nests either do not survive or migrate after being raided. Colony composition and intranest relatedness of free-living L. longispinosus colonies differed markedly between areas with slavemakers and those that are parasite-free. In the presence of slavemakers, host colonies were less likely to be polygynous and had fewer workers and a higher relatedness among worker brood. Host nests with slavemaker neighbors allocated more resources into sexuals, possibly caused by these shifts in nest demography. Finally, enslaved Leptothorax workers in P. americanus nests appeared to be less efficient than their counterparts in free-living colonies. Thus, slavemakers exert a much stronger impact on their hosts than had previously been suspected and represent an unique system to study parasite-host coevolution.  相似文献   

9.
Variation in community composition over a species' geographic range leads to divergent selection pressures, resulting in interpopulation variation in trait expression. One of the most pervasive selective forces stems from antagonists such as parasites. Whereas hosts of microparasites developed sophisticated immune systems, social parasites select for behavioural host defences. Here, we investigated the link between parasite pressure exerted by the socially parasitic slavemaking ant Protomognathus americanus and colony‐level aggression in Temnothorax ants from 17 populations. We studied almost the entire geographic range of two host species, including unparasitized populations. As previous studies have demonstrated that host colonies responding highly aggressively towards conspecifics fare better during slavemaker attacks, we predicted higher aggression levels in severely parasitized populations. Indeed, we demonstrate an increase in aggression towards conspecifics with parasite pressure, a pattern that was consistent over the two host species. In contrast to other studies, aggression against the parasite itself did not shift with parasite pressure. This may be explained by an absence of costs of parasite‐specific aggression in parasite‐free populations. The preferred host species T. longispinosus was generally more aggressive; however, the association between parasite pressure and aggression was found for both species, suggesting convergent co‐adaptation. Two potentially confounding factors, colony density and the co‐occurrence of a competing Temnothorax species in the community, could not explain the level of colony aggression in intra‐ and interspecific interactions. Instead, our study points to social parasite pressure as the determining factor shaping antagonistic interactions within, but not between, host species.  相似文献   

10.
During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus . Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.  相似文献   

11.
Slave-making ants exploit the worker force of host colonies permanently and have to make recurrent raids in order to replenish the slave’s stock. Some of these parasite species exploit different host species and few studies so far have been devoted to host species recognition mechanisms. Here, we tried to determine if opportunist slave-making ants using different host species rely on innate or experience-induced preferences to discriminate host from non-host species. We show that Myrmoxenus ravouxi slave-making workers are not only more aggressive toward heterocolonial host and potential host species workers when compared with non-host species workers, but also toward heterocolonial host workers than toward heterocolonial conspecifics. Moreover, M. ravouxi workers display more antennations and contacts toward the heterocolonial host species when compared with the non-host species. We also show that they do not discriminate between homocolonial and heterocolonial conspecifics. Together, our results suggest that this opportunistic slave-making ant species may have a complex social recognition template based on both innate and experience-based mechanisms.  相似文献   

12.
Summary Little information is available regarding the raiding behavior in nature of dulotic ants belonging to the tribeLeptothoracini. Between July 17 and 24, 1991, several raids ofChalepoxenus muellerianus (Finzi) were observed in nature near Tignale/Lago di Garda, Italy. Apparently, this species raids frequently during its summer raiding season (5 raids were observed during 7 days spent observing 8 colonies). A singleChalepoxenus colony sometimes raids more than one host colony more or less simultaneously. Observations during which oneChalepoxenus colony raided another and captured slavemaker brood indicate that intraspecific raids can occur either accidentally, or as a result of competition or territoriality when there is a sufficient dense slavemaker population.  相似文献   

13.
Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers--regardless of the route to achieve this social structure--enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants.  相似文献   

14.
Social insect colonies are like fortresses, well protected and rich in shared stored resources. This makes them ideal targets for exploitation by predators, parasites and competitors. Colonies of Myrmica rubra ants are sometimes exploited by the parasitic butterfly Maculinea alcon. Maculinea alcon gains access to the ants' nests by mimicking their cuticular hydrocarbon recognition cues, which allows the parasites to blend in with their host ants. Myrmica rubra may be particularly susceptible to exploitation in this fashion as it has large, polydomous colonies with many queens and a very viscous population structure. We studied the mutual aggressive behaviour of My. rubra colonies based on predictions for recognition effectiveness. Three hypotheses were tested: first, that aggression increases with distance (geographical, genetic and chemical); second, that the more queens present in a colony and therefore the less-related workers within a colony, the less aggressively they will behave; and that colonies facing parasitism will be more aggressive than colonies experiencing less parasite pressure. Our results confirm all these predictions, supporting flexible aggression behaviour in Myrmica ants depending on context.  相似文献   

15.
The evolutionary interactions between permanently social parasiticspecies and their hosts are of special interest because socialparasites are not only closely dependent on, but are also closelyrelated to, their hosts. The small European slavemaker Harpagoxenussublaevis has evolved several characters that help manipulateits host. In this study we investigated adaptations of thissocial parasite to its local hosts and the geographic patternof host resistance in two main host species from three differentpopulations. In behavioral experiments, we examined whetherhost colonies from three geographically distant Leptothoraxacervorum populations varied in their ability to defend thenest against social parasites. Naive colonies from the unparasitizedEnglish population killed attacking slavemakers more often thandid host colonies from two parasitized populations. We alsofound strong interpopulation variation in the ability of theslavemaker to manipulate host behavior. H. sublaevis uses theDufour gland secretion to induce intracolonial fights and, ingeneral, this "propaganda" substance was most effective againstlocal hosts. Our results suggest that the social parasite isleading the arms race in this aspect. Similar experiments uncovereddifferences between two populations of the second host speciesL. muscorum and could demonstrate that nest defense in bothhost species is similarly efficient. In L. acervorum, monogynouscolonies were more successful in nest defense, whereas socialstructure had no impact in L. muscorum. Colony size did notaffect the efficacy of nest defense in either host species.The caste of the slavemaker had a strong influence on the successof an attack.  相似文献   

16.
The speed and the dynamics of the co-evolutionary process strongly depend on the relative strengths of reciprocal selection pressures exerted by the interacting species. Here, we investigate the influence of an obligate social parasite, the slave-making ant Harpagoxenus sublaevis, on populations of the two main host species Leptothorax acervorum and Leptothorax muscorum from a German ant community. A combination of genetic and demographic data allowed us to analyse the consequences of raiding pressure on the hosts' life history and possible host preferences of the parasite. We can demonstrate that slave raids during which the social parasite pillages brood from neighbouring host colonies are both frequent and extremely destructive for both host species. Microsatellite analysis showed that, on average, a single slave-maker colony conducts more than three raids per year and that host colonies mostly perish in the aftermath of these parasite attacks. Only in few cases, surviving nests of previously raided host colonies were found in the surroundings of slave-maker colonies. As a consequence of the high prevalence of parasites and their recurrent and devastating slave raids on host colonies, the life expectancy of host colonies was severely reduced. Combining our results on host-specific parasitic colony founding and raiding frequencies with the post-raid survival rate, we can demonstrate an overall higher mortality rate for the smaller host species L. muscorum. This might be caused by a preference of H. sublaevis for this secondary host species as demographic data on host species usage indicate.  相似文献   

17.
Summary Four intraspecific slave raids involving 3 colonies of the European amazon antPolyergus rufescens Latr. occurred during hot and sunny afternoons in July 1992 near Parma, Italy. Generally, no fighting between the resident ants and the invaders was recorded, and pillage of the brood lasted just a few minutes. The brood captured during 3 raids was collected and transported ot the laboratory where slavemaker callow workers eclosed and were accepted by both the raiders and hosts present in artificial mixed colonies. This is the first case of functional intraspecific slavery recorded in the field for the obligatory dulotic formicine antP. rufescens.  相似文献   

18.
How can antiparasite defence traits evolve even if they do not directly benefit their carriers? An example of such an indirect defence is rebellion of enslaved Temnothorax longispinosus ant workers against their social parasite Temnothorax americanus, a slavemaking ant. Ant slaves have been observed to kill their oppressors' offspring, a behaviour from which the sterile slaves cannot profit directly. Parasite brood killing could, however, reduce raiding pressure on related host colonies nearby. We analyse with extensive computer simulations for the Temnothorax slavemaker system under what conditions a hypothetical rebel allele could invade a host population, and in particular, how host–parasite dynamics and population structure influence the rebel allele's success. Exploring a wide range of model parameters, we only found a small number of parameter combinations for which kin selection or multilevel selection could allow a slave rebellion allele to spread in the host population. Furthermore, we did not detect any cases in which the reduction of raiding pressure in the close vicinity of the slavemaker nest would substantially contribute to the inclusive fitness of rebels. This suggests that slave rebellion is not costly and perhaps a side‐effect of some other beneficial trait. In some of our simulations, however, even a costly rebellion allele could spread in the population. This was possible when host–parasite interactions led to a metapopulation dynamic with frequent local extinctions and recolonizations of demes by the offspring of few immigrants.  相似文献   

19.
Social parasites exploit the brood care behavior of other species and can exert strong selection pressures on their hosts. As a consequence, hosts have developed defenses to circumvent or to lower the costs of parasitism. Recently, a novel, indirect defense trait, termed slave rebellion, has been described for hosts of a slave-making ant: Enslaved Temnothorax longispinosus workers reduce local parasite pressure by regularly killing pupae of their obligatory slavemaking parasite Protomognathus americanus. Subsequently, growth of social parasite nests is reduced, which leads to fewer raids and likely increases fitness of neighboring related host colonies. In this study, we investigate the presence and expression the slave rebellion trait in four communities. We report its presence in all parasitized communities, document strong variation in its expression between different geographic sites and discuss potential explanations for this observed variation.  相似文献   

20.
The evolution of parasite virulence and host defences is affected by population structure. This effect has been confirmed in studies focusing on large spatial scales, whereas the importance of local structure is not well understood. Slavemaking ants are social parasites that exploit workers of another species to rear their offspring. Enslaved workers of the host species Temnothorax longispinosus have been found to exhibit an effective post‐enslavement defence behaviour: enslaved workers were observed killing a large proportion of the parasites’ offspring. As enslaved workers do not reproduce, they gain no direct fitness benefit from this ‘rebellion’ behaviour. However, there may be an indirect benefit: neighbouring host nests that are related to ‘rebel’ nests can benefit from a reduced raiding pressure, as a result of the reduction in parasite nest size due to the enslaved workers’ killing behaviour. We use a simple mathematical model to examine whether the small‐scale population structure of the host species could explain the evolution of this potentially altruistic defence trait against slavemaking ants. We find that this is the case if enslaved host workers are related to nearby host nests. In a population genetic study, we confirm that enslaved workers are, indeed, more closely related to host nests within the raiding range of their resident slavemaker nest, than to host nests outside the raiding range. This small‐scale population structure seems to be a result of polydomy (e.g. the occupation of several nests in close proximity by a single colony) and could have enabled the evolution of ‘rebellion’ by kin selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号