首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing.  相似文献   

2.
3.
Recent studies strongly suggest an active involvement of the c-Jun N-terminal kinase (JNK) signaling pathway in tumor necrosis factor (TNF)-induced apoptosis. The direct evidence for the role of JNK and its isoforms has been missing and the mechanism of how JNK actually could facilitate this process has remained unclear. In this study, we show that Jnk2-/- primary mouse embryonic fibroblasts (pMEFs) exhibit resistance towards TNF-induced apoptosis as compared to corresponding wild-type and Jnk1-/- pMEFs. JNK2-deficient pMEFs could be resensitized to TNF via retroviral transduction of any of the four different JNK2 splicing variants. Jnk2-/- pMEFs displayed deficient and delayed effector caspase activation as well as impaired cytosolic cystein cathepsin activity: processes that both were needed for efficient TNF-induced apoptosis in pMEFs. Our work demonstrates that JNK has a central role in the promotion of TNF-induced apoptosis in pMEFs, and that the JNK2 isoform can regulate both mitochondrial and lysosomal death pathways in these cells.  相似文献   

4.
5.
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase‐seq and histone modification ChiP‐seq data on various cell‐types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell‐types. We found a subset of the signature genes whose expression is dependent on Wnt/β‐catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415–430, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI), i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Mouse embryonic fibroblasts (C3H10T1/2) were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN) and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days). For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay), was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response.  相似文献   

7.
8.
Neurotoxicity of microglial cathepsin D revealed by secretome analysis   总被引:2,自引:0,他引:2  
Kim S  Ock J  Kim AK  Lee HW  Cho JY  Kim DR  Park JY  Suk K 《Journal of neurochemistry》2007,103(6):2640-2650
Microglia-driven inflammatory responses have both neuroprotective and neurotoxic effects in the CNS. The excessive and chronic activation of microglia, however, may shift the balance towards neurotoxic effects. In this regard, proteins secreted from activated microglia likely play a key role in the neurotoxic effects. To characterize secreted proteins of activated microglia, conditioned media obtained from BV-2 mouse microglia cells were analyzed by two-dimensional gel electrophoresis or liquid chromatography coupled with tandem mass spectrometry. Among many proteins identified in the secretome of activated microglia, an aspartic endoprotease cathepsin D has been found to mediate microglial neurotoxicity based on the following results: (i) the expression of cathepsin D protein was markedly increased in lipopolysaccharide/interferon-γ-stimulated microglia compared with resting microglia as determined by western blot analysis of conditioned media; (ii) knockdown of cathepsin D expression in microglia using short hairpin RNA diminished the neurotoxicity in the coculture of microglia and neuroblastoma cells and (iii) recombinant procathepsin D protein exerted cytotoxic effects toward cultured neurons. In conclusion, cathepsin D appears to play a central role in the microglial neurotoxicity, and could be a potential biomarker or drug target for the diagnosis and treatment of neurodegenerative diseases that are associated with excessive microglial activation and subsequent neurotoxic inflammation.  相似文献   

9.
Determination of cleavage pattern in embryonic blast cells of the leech   总被引:1,自引:0,他引:1  
The o blast cells of the leech embryo become committed to one of two alternative cleavage geometries shortly before they divide. Cleavage geometry depends upon the presence or absence of the adjoining p bandlet, and if that bandlet is ablated, the pattern of o blast cell cleavages will undergo an abrupt transition several hours later. Previous work has shown that the oblast cell becomes committed to the formation of a particular complement of postmitotic descendants early in its differentiation, but the present findings suggest that cleavage pattern and descendant fate are determined at separate commitment events.  相似文献   

10.
To investigate the intracellular transport mechanism of lysosomal cathepsin L in yeast cells, we attempted to produce mouse cathepsin L in Saccharomyces cerevisiae by placing the coding region under the control of the promoter of the yeast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. Immunoblotting analysis by the use of an antibody specific for rat cathepsin L revealed that the yeast cells carrying the cathepsin L coding sequence produced 39- and 30-kDa products, which correspond to the rat procathepsin L and the single-chain form of mature cathepsin L, respectively. The precursor polypeptide showed sensitivity toward endoglycosidase H treatment. Cell fractionation experiments demonstrated that the processed form of 30-kDa cathepsin L was found to be colocalized to the yeast vacuole with the marker enzyme carboxypeptidase Y in a Ficoll step gradient. In the prepared vacuolar fraction, a considerable amount of cathepsin L was revealed to be cofractionated with the vacuolar membranes. Furthermore, the phase separation experiments with Triton X-114 provide the first evidence showing that the mature form of cathepsin L polypeptide is strongly associated with the vacuolar membranes. Therefore, the present results suggest that the mouse cathepsin L precursor polypeptide is initially synthesized as the proenzyme in the yeast cells and then correctly delivered to the vacuole. During the intracellular sorting pathway, the procathepsin L would undergo the post-translational proteolytic processing step to generate the mature enzyme. Based on these lines of evidence, we propose that cathepsin L is recognized by mechanisms similar to those for the intracellular sorting and processing of vacuolar proteins in the yeast cells.  相似文献   

11.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

12.
13.
Previous studies of Rac1 in fibroblasts have used dominant negative constructs, which may have nonspecific effects. We used a conditional Rac1 allele to critically examine Rac1 function in mouse fibroblasts. Lack of Rac1 had dramatic effects on nonconfluent cells, which were elongated and had extensive blebbing, but no lamellipodia or ruffle formation. However, Rac1-null fibroblasts translocated using pseudopodia-like protrusions without lamellipodia, migrating toward a platelet-derived growth factor (PDGF) gradient as efficiently as their wild-type counterparts. Rac1-null fibroblasts closed wounds in vitro and spread on a fibronectin substrate, although at a slower rate than wild-type cells. However, Rac1-null cells were markedly impaired in proliferation, with a defect in G1 to S transition, although they were capable of surviving in culture for more than 2 wk. These results refine our understanding of the functions of Rac1, indicate that lamellipodia formation is not required for cell motility, and show that PDGF-induced chemotaxis can occur in the absence of both lamellipodia and Rac1.  相似文献   

14.
15.
16.
Samper E  Nicholls DG  Melov S 《Aging cell》2003,2(5):277-285
Reactive oxygen species are an inevitable by-product of mitochondrial respiration. It has been estimated that between 0.4 and 4% of molecular oxygen is converted to the radical superoxide (O2*-) and this level is significantly influenced by the functional status of the mitochondria. It is well established that exogenous oxidative stress and high doses of mitochondrial poisons such as paraquat and carbonyl cyanide 4 (trifluoromethoxy) phenylhydrazone (FCCP) can lead to genomic instability. In this report we show for the first time that endogenous mitochondrial oxidative stress in standard cell culture conditions results in nuclear genomic instability in primary mouse embryonic fibroblasts (MEFs). We show that lack of mitochondrial superoxide dismutase in MEFs leads to a severe increase of double strand breaks, end-to-end fusions, chromosomal translocations, and loss of cell viability and proliferative capacity. Our results predict that endogenous mitochondrial oxidative stress can induce genomic instability, and therefore may have a profound effect in cancer and aging.  相似文献   

17.
We previously reported that partial disruption of the Ankrd26 gene in mice leads to hyperphagia and leptin-resistant obesity. To determine whether the Ankrd26 mutation can affect the development of adipocytes, we studied mouse embryo fibroblasts (MEFs) from the mutant mice. We found that Ankrd26(-/-) MEFs have a higher rate of spontaneous adipogenesis than normal MEFs and that adipocyte formation is greatly increased when the cells are induced with troglitazone alone or with a mixture of troglitazone, insulin, dexamethasone, and methylisobutylxanthine. Increased adipogenesis was detected as an increase in lipid droplet formation and in the expression of several markers of adipogenesis. There was an increase in expression of early stage adipogenesis genes such as Krox20, KLF5, C/EBPβ, C/EBPδ, and late stage adipogenesis regulators KLF15, C/EBPα, PPARγ, and aP2. There was also an increase in adipocyte stem cell markers CD34 and Sca-1 and preadipocyte markers Gata2 and Pref-1, indicating an increase in both stem cells and progenitor cells in the mutant MEFs. Furthermore, ERK was found constitutively activated in Anrd26(-/-) MEFs, and the addition of MEK inhibitors to mutant cells blocked ERK activation, decreased adipogenesis induction, and significantly reduced expression of C/EBPδ, KLF15, PPARγ2, CD34, and Pref-1 genes. We conclude that Ankrd26 gene disruption promotes adipocyte differentiation at both the progenitor commitment and differentiation steps and that ERK activation plays a role in this process.  相似文献   

18.
Studies on the development of aggregated, isolated and rearranged blastomeres have engendered the view that in mammals, unlike most other animals, egg organization has no role in the genesis of asymmetries that are essential for cellular diversification and the specification of embryonic axes. Such asymmetries are assumed to arise post-zygotically through interactions between initially naive cells. However, various findings are difficult to reconcile with this view. Here, a consistent relationship between the structure of the blastocyst and the two-cell stage in the mouse has been found using a strictly non-invasive marking technique: injection of small oil drops into the substance of the zona pellicuda. This has revealed that both the embryonic-abembryonic axis of the blastocyst and its plane of bilateral symmetry are normally orthogonal to the plane of first cleavage. This relationship was also seen when denuded two-cell conceptuses were prevented from rotating during subsequent cleavage by immobilizing them in a gel. Therefore, during normal mouse development the axes of the blastocyst, which have been implicated in establishing those of the fetus, are already specified by the onset of cleavage.  相似文献   

19.
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号