首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

We have recently shown that curcumin (a diferuloylmethane) inhibits growth and induces apoptosis, and also demonstrated that TRAIL induces apoptosis by binding to specific cell surface death receptors in prostate cancer cells. The objectives of this paper were to investigate the molecular mechanisms by which curcumin enhanced the apoptosis-inducing potential of TRAIL in prostate cancer cells.

Results

Curcumin enhanced the apoptosis-inducing potential of TRAIL in androgen-unresponsive PC-3 cells and sensitized androgen-responsive TRAIL-resistant LNCaP cells. Curcumin inhibited the expressions of Bcl-2, Bcl-XL, survivin and XIAP, and induced the expressions Bax, Bak, PUMA, Bim, and Noxa and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5) in both cell lines. Overexpression of dominant negative FADD inhibited the interactive effects of curcumin and TRAIL on apoptosis. Treatment of these cells with curcumin resulted in activation of caspase-3, and caspase-9, and drop in mitochondrial membrane potential, and these events were further enhanced when combined with TRAIL. Curcumin inhibited capillary tube formation and migration of HUVEC cells and these effects were further enhanced in the presence of MEK1/2 inhibitor PD98059.

Conclusion

The ability of curcumin to inhibit capillary tube formation and cell migration, and enhance the therapeutic potential of TRAIL suggests that curcumin alone or in combination with TRAIL can be used for prostate cancer prevention and/or therapy.  相似文献   

2.
3.
Formation of the pro-apoptotic death-inducing signaling complex (DISC) can be initiated in cancer cells via binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to its two pro-apoptotic receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Primary components of the DISC are trimerized TRAIL-R1/-R2, FADD, caspase 8 and caspase 10. The anti-apoptotic protein FLIP can also be recruited to the DISC to replace caspase 8 and form an inactive complex. Caspase 8/10 processing at the DISC triggers the caspase cascade, which eventually leads to apoptotic cell death. Besides TRAIL, TRAIL-R1- or TRAIL-R2-selective variants of TRAIL and agonistic antibodies have been designed. These ligands are of interest as anti-cancer agents since they selectively kill tumor cells. To increase tumor sensitivity to TRAIL death receptor-mediated apoptosis and to overcome drug resistance, TRAIL receptor ligands have already been combined with various therapies in preclinical models. In this review, we discuss factors influencing the initial steps of the TRAIL apoptosis signaling pathway, focusing on mechanisms modulating DISC assembly and caspase activation at the DISC. These insights will direct rational design of drug combinations with TRAIL receptor ligands to maximize DISC signaling.  相似文献   

4.
5.
6.
Treatment of breast cancer is complex and challenging due to the heterogeneity of the disease. To avoid significant toxicity and adverse side-effects of chemotherapy in patients who respond poorly, biomarkers predicting therapeutic response are essential. This study has utilized a proteomic approach integrating 2D-DIGE, LC-MS/MS, and bioinformatics to analyze the proteome of breast cancer (ZR-75-1 and MDA-MB-231) and breast epithelial (MCF-10A) cell lines induced to undergo apoptosis using a combination of doxorubicin and TRAIL administered in sequence (Dox-TRAIL). Apoptosis induction was confirmed using a caspase-3 activity assay. Comparative proteomic analysis between whole cell lysates of Dox-TRAIL and control samples revealed 56 differentially expressed spots (≥2-fold change and p < 0.05) common to at least two cell lines. Of these, 19 proteins were identified yielding 11 unique protein identities: CFL1, EIF5A, HNRNPK, KRT8, KRT18, LMNA, MYH9, NACA, RPLP0, RPLP2, and RAD23B. A subset of the identified proteins was validated by selected reaction monitoring (SRM) and Western blotting. Pathway analysis revealed that the differentially abundant proteins were associated with cell death, cellular organization, integrin-linked kinase signaling, and actin cytoskeleton signaling pathways. The 2D-DIGE analysis has yielded candidate biomarkers of response to treatment in breast cancer cell models. Their clinical utility will depend on validation using patient breast biopsies pre- and post-treatment with anticancer drugs.  相似文献   

7.
On the TRAIL to apoptosis   总被引:12,自引:0,他引:12  
  相似文献   

8.
The 52-aminoacid peptide adrenomedullin (AM) is expressed in the normal and malignant prostate. We have previously shown that prostate cancer cells produce and secrete AM, which acts as an autocrine growth inhibitory factor. We have evaluated in the present study the role of AM in prostate cancer cell apoptosis, induced either by serum deprivation or treatment with the chemotherapeutic agent etoposide (which acts as an inhibitor of topoisomerase II). For this purpose we over-expressed AM in PC-3, DU 145 and LNCaP cells, which were transfected with an expression vector carrying AM. We also treated the parental cell lines with synthetic AM in normal culture conditions and in conditions of induced-apoptosis. After serum removal, AM prevented apoptosis in DU 145 and PC-3 cells, but not in LNCaP cells. When treated with etoposide, AM prevented apoptosis in PC-3 and LNCaP cells, but not in DU 145 cells. Cell cycle analysis demonstrated a significant decrease in the percentage of AM-overexpressing PC-3 cells in the subG0/G1 phase after treatment with etoposide, as compared to the percentage of mock-transfected PC-3 treated cells. Western blot showed that protein levels of phosphorylated ERK1/2 increased in parental PC-3 cells after treatment with etoposide. In PC-3 cells overexpressing AM, phosphorylated ERK1/2 basal levels were lower than basal levels of parental PC-3 cells, and treatment with etoposide did not result in such an increase. Etoposide produced a significant increase in cleaved PARP in parental PC-3 cells. However, PC-3 clones overexpressing AM that were treated with etoposide only showed a mild increase in fragmented PARP. The ratio Bcl-2/Bax was reduced in parental or mock-transfected PC-3 cells after treatment with etoposide. On the contrary, this ratio was not reduced in PC-3 clones with AM overexpression that were treated with etoposide. All these data demonstrate that AM plays a protective role against induced apoptosis in prostate cancer cells. These results may have important implications in prostate cancer resistance to chemotherapeutic agents.  相似文献   

9.
In the present study we have explored the sensitivity of ovarian cancer cells to TRAIL and proteasome inhibitors. Particularly, we have explored the capacity of proteasome inhibitors to bypass TRAIL resistance of ovarian cancer cells. For these studies we have used the A2780 ovarian cancer cell line and its chemoresistant derivatives A2780/DDP and A2780/ADR, providing evidence that: (i) the three cell lines are either scarcely sensitive (A2780 and A2780/ADR) or moderately sensitive (A2780/DDP) to the cytotoxic effects of TRAIL; (ii) the elevated c-FLIP expression observed in ovarian cancer cells is a major determinant of TRAIL resistance of these cells; (iii) proteasome inhibitors (PS-341 or MG132) are able to exert a significant pro-apoptotic effect and to greatly enhance the sensitivity of both chemosensitive and chemoresistant A2780 cells to TRAIL; (iv) proteasome inhibitors damage mitochondria through stabilization of BH3-only proteins, Bax and caspase activation and significantly enhance TRAIL-R2 expression; (v) TRAIL-R2, but not TRAIL-R1, mediates the apoptotic effects of TRAIL on ovarian cancer cells. Importantly, studies on primary ovarian cancer cells have shown that these cells are completely resistant to TRAIL and proteasome inhibitors markedly enhance the sensitivity of these cells to TRAIL. Given the high susceptibility of ovarian cancer cells to proteasome inhibitors, our results further support the experimental use of these compounds in the treatment of ovarian cancer.  相似文献   

10.
Factors that regulate the induction of apoptosis of tumour cells are potential candidates for therapeutic intervention for the majority of cancers. Studying modifiers of apoptotic responses, such as members of the tumour necrosis factor receptor superfamily, may give clues as to how induction of apoptosis in tumours could be maximized to enhance the benefit of treatment regimes. Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) is a promising anti‐tumour molecule since its activity is specific for tumour cell populations. TRAIL binds to death receptors, inducing apoptosis in susceptible cells. The mechanisms which determine whether tumour cells are susceptible to TRAIL are unclear, and several mechanisms have been proposed, including expression of osteoprotegerin (OPG), decoy receptors, and factors that affect intracellular signalling of pro‐apoptotic molecules, such as c‐FLIP. Here we show that experiments to modulate the activity of one of these factors, OPG, by over‐expression and also by stable knockdown of OPG expression, alters the TRAIL sensitivity of PC3 prostate cancer cells. However we show that some observed effects, which appear to support the hypothesis that OPG prevents TRAIL‐induced apoptosis of tumour cells, may be due to variation of the TRAIL response of sub‐clones of tumour cells, even within a cloned population. These results highlight potential limitations of experiments designed to test contribution of factors affecting intrinsic apoptosis susceptibility using cloned tumour cell populations. J. Cell. Biochem. 104: 1452–1464, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Bone morphogenetic proteins (BMP) have been implicated in the development of bone metastases in prostate cancer. In this study, we investigated the role which BMP-9 played in prostate cancer and found that the expression of BMP-9 was decreased or absent in prostate cancer, particularly in the foci of higher grade disease. We further investigated the influence of BMP-9 on the biological behaviors of prostate cancer cells. The forced overexpression of BMP-9 prevented the in vitro growth, cell-matrix adhesion, invasion, and migration of prostate cancer cells. We also elucidated that BMP-9 induced apoptosis in PC-3 cells through the up-regulation of prostate apoptosis response-4. Among the receptors which have been implicated in the signaling of BMP-9, BMPR-IB and BMPR-II have also been implicated in the development and progression of prostate cancer. Knockdown of BMPR-IB or BMPR-II using respective hammerhead ribozyme transgenes could promote cell growth in vitro. We also found that BMPR-II is indispensable for the Smad-dependent signal transduction by BMP-9 in PC-3 cells, in which Smad-1 was phosphorylated and translocated from the cytoplasm into the nuclei. Taken together, BMP-9 inhibits the growth of prostate cancer cells due to the induced apoptosis, which is related to an up-regulation of prostate apoptosis response-4 through a Smad-dependent pathway. BMP-9 could also prevent the migration and invasiveness of prostate cancer. This suggests that BMP-9 may function as a tumor suppressor and apoptosis regulator in prostate cancer.  相似文献   

12.
Zinc concentrations in the prostate are uniquely high but are dramatically decreased with prostate cancer. Studies have suggested that increasing zinc in the prostate may be a potential therapeutic strategy. The goal of this study was to evaluate the antiproliferative effects of zinc in prostate cancer cells (PC-3) and noncancerous benign prostate hyperplasia (BPH) cells (BPH-1) and to define possible mechanisms. PC-3 and BPH-1 cells were treated with zinc (0–250 μM) for 24 and 48 h, and cell growth and viability were examined. Apoptosis was assessed by phosphatidylserine externalization, caspase activation and protein expression of B-cell CLL/lymphoma 2 (Bcl-2)-associated X protein (BAX):Bcl-2. BPH-1 cells were more sensitive to the antiproliferative effects of zinc compared to PC-3. The response to zinc in PC-3 and BPH-1 cells differed as evidenced by opposing effects on Bcl-2:BAX expression. Additionally, different effects on the nuclear expression and activity of the p65 subunit of nuclear factor kappa B were observed in response to zinc between the two cell types. The differential response to zinc in PC-3 and BPH-1 cells suggests that zinc may serve an important role in regulating cell growth and apoptosis in prostate cancer and hyperplasia cells.  相似文献   

13.
Par-4 inducible apoptosis in prostate cancer cells   总被引:4,自引:0,他引:4  
Prostate cancer is associated with the inability of prostatic epithelial cells to undergo apoptosis rather than with increased cell proliferation. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic molecule that is capable of selectively inducing apoptosis in cancer cells when over-expressed, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. This review discusses the salient functions of Par-4 that can be harnessed to prostate cancer therapy.  相似文献   

14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer therapeutics. However, some tumor cells are resistant to TRAIL-induced apoptosis. Our previous studies have shown that luteolin, a naturally occurring flavonoid, induces the up-regulation of death receptor 5 (DR5), which is a receptor for TRAIL. Here, we show for the first time that luteolin synergistically acts with exogenous soluble recombinant human TRAIL to induce apoptosis in HeLa cells, but not in normal human peripheral blood mononuclear cells. The combined use of luteolin and TRAIL induced Bid cleavage and the activation of caspase-8. Also, human recombinant DR5/Fc chimera protein, caspase inhibitors, and DR5 siRNA efficiently reduced apoptosis induced by co-treatment with luteolin and TRAIL. These results raise the possibility that this combined treatment with luteolin and TRAIL might be promising as a new therapy against cancer.  相似文献   

15.
16.
17.
Recent biochemical and genetic studies have substantially increased our understanding of death signal transduction pathways, making it clear however, that apoptosis is not a single-lane, one-way street. Rather, multiple parallel pathways have been identified. For instance, analysis of bcl-2, bax, p53, and caspase knockout mice while establishing distinct roles for each of these apoptotic players, they also provided valuable information for the design of specific inhibitors of apoptosis. Thus blocking one pathway, as in caspase knockout mice, what we observe is not a complete suppression of apoptosis but rather a delay in apoptosis induction (Hakem et al., 1998; Kuida et al., 1998). In view of nature's means of ensuring activation of a compensatory apoptotic response, when one pathway fails in developing prostate cancer therapeutic interventions, the challenge remains to further dissect individual apoptotic pathways. Advances in our understanding of the integrated functions governing prostate cell proliferation and cell death, clearly suggest that effective prostate cancer therapies are not only molecularly targeted, but that are also customized to take into account the delicate balance of opposing growth influences in the ageing gland. In this review we discuss the evidence on the significance of molecular deregulation of the key players of this growth equilibrium, apoptosis and cell proliferation in prostate cancer progression, and the clinical implications of changes in the apoptotic response in disease detection and therapy.  相似文献   

18.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号