首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligodeoxynucleotides containing unmethylated CpG sequences (CpG DNAs) activate the vertebrate innate immune system via toll-like receptor 9 (TLR-9). Although CpG DNA is a promising immunotherapeutic agent, its short circulation time in biological fluids due to nuclease is the major drawback. This paper proposes that a natural polysaccharide called schizophyllan (SPG) can be used as an effective CpG DNA carrier because SPG can complex with CpG DNA and the resultant complex shows the nuclease resistance of the bound DNA. In order to increase cellular uptake in vitro, we chemically attached spermine, cholesterol, arginine octamer, or RGD peptide to SPG. The complexes made of the chemically modified SPG and CpG DNA having a phosphorothioate (PS) or phosphodiester (PO) backbone led to increased secretion of cytokines of about 4- to 15-fold, compared with the uncomplexed dose. Furthermore, when PO CpG DNA was complexed with unmodified SPG, the IL-12 level increased by almost 3- to 11-fold compared with the naked dose. The PO CpG DNA/unmodified SPG complex data suggested that unmodified SPG might effectively deliver PO in vivo due to the electrically neutral nature of unmodified SPG. When the complexed CpG DNAs were injected intraperitoneally, a large amount of IL-12 production was observed compared with the uncomplexed material. Both in vivo and vitro assays indicated that the SPG complex may be of use for CpG DNA therapy.  相似文献   

2.
Zinc-chelated poly(1-vinylimidazole) (PVIm-Zn) and a carbohydrate ligand polycation, a poly(l-lysine) conjugated with lactose molecules (PLL-Lac), have formed DNA ternary complexes for gene delivery. The particle size of the PVIm-Zn/DNA complexes with negative zeta potential was decreased by the addition of the PLL-Lac. The resulting PLL-Lac/PVIm-Zn/DNA ternary complexes, which exhibited the pH-dependent dissociation of the PLL-Lac, mediated more gene expression than the PVIm/DNA binary complexes. The PLL-Lac/PVIm-Zn/DNA complexes with the specific recognition of cell surface receptors mediated the highest gene expression without cytotoxicity at a relatively lower charge ratio (positive/negative = 2.5). These results suggest that the pH-dependent dissociation of the carbohydrate ligands after the recognition of cell surface receptors, including the physicochemical and biochemical function of PVIm-Zn, played an important role in gene expression.  相似文献   

3.
Oligodeoxynucleotides containing unmethylated CpG sequences (CpG DNAs) are known as an immune adjuvant. CpG DNAs coupled with a particular antigen enabling both CpG DNA and antigen delivery to the same antigen-presenting cell have been shown to be more effective. Based on our previous finding that beta-(1-->3)-D-glucan schizophyllan (SPG) can be used as a CpG DNA carrier, here we present the synthesis of an antigen-conjugated SPG and the characterization of the conjugate. Ovalbumin (OVA, 43 kDa) was used as a model antigen, and two OVA were conjugated to one SPG molecule (M(w) = 150,000), denoted by OVA-SPG. Circular dichroism and gel electrophoresis showed that OVA-SPG could form a complex with a (dA)(40)-tailed CpG DNA at the 3' end (1,668-(dA)(40)). When OVA-SPG was added to macrophages (J774.A1), the amount of the ingested OVA-SPG was increased compared with that of OVA itself, suggesting that Dectin-1 (proinflammatory nonopsonic receptor for beta-glucans) is involved to ingest OVA-SPG. Furthermore, the complex of the conjugate and DNA was co-localized in the same vesicles, implying that OVA (antigen) and CpG DNA (adjuvant) were ingested into the cell at the same time. This paper shows that OVA-SPG can be used as a CpG DNA carrier to induce antigen-specific immune responses.  相似文献   

4.
Poly(1-vinylimidazole) (PVIm) with aminoethyl groups has been synthesized as a new pH-sensitive polycation to enhance cell-specific gene delivery. The resulting aminated PVIm (PVIm-NH2) was water-soluble despite deprotonation of the imidazole groups at physiological pH, as determined by acid-base titration and solution turbidity measurement. Hemolysis assay showed that PVIm-NH2 enhanced membrane disruptive ability at endosomal pH, owing to the protonation of the imidazole groups with a pKa value around 6.0. Agarose gel retardation assay proved that the introduced aminoethyl groups worked as anchor groups to retain DNA. Furthermore, the ternary complex of DNA, PVIm-NH2, and a poly(L-lysine) conjugated with lactose molecules, PLL-Lac, at pH 7.4 dissociated the PLL-Lac polycation by protonation of the imidazole groups of PVIm-NH2 at pH 6.0. The resulting PVIm-NH2/DNA binary complexes easily released DNA, as compared with the PLL-Lac/PVIm-NH2/DNA ternary complex, which was examined by competitive exchange with dextran sulfate. By using PVIm-NH2 as a pH-sensitive DNA carrier, as well as PLL-Lac as a cell-targeting DNA carrier, the resulting ternary complex specifically mediated the gene expression, which depended on the protonation of the imidazole groups, on human hepatoma HepG2 cells with asialoglycoprotein receptors. These results suggest that the cell-specific gene delivery mediated by PLL-Lac was enhanced by PVIm-NH2 as a new pH-sensitive polycation.  相似文献   

5.
A new approach to optimization of mixtures for the condensation and introduction of plasmid DNA into eukaryotic cells is proposed, which is based on the formation of ternary interpolyelectrolyte complexes (IPEC) DNA/polycation/polyanion. Polyethyleneimine (PEI) with M 30-40 kDa as polycation and polyacrylic acid (PA) with M 20 kDa or its grafted copolymer with polyethyleneglycol (PEG) as polyanion were used, and ternary complexes with various ratios of the components were prepared. The PA-PEG incorporation into a ternary complex (by itself or as a 1:1 mixture with PA) was shown to confer the solubility onto complexes in a wide range of DNA/PEI ratios. Incorporation of even minute amounts of PA-PEG (as a 1:9 mixture with PA), while not completely preventing the aggregation of ternary IPEC, drastically changed their sorption characteristics. Using a beta-galactosidase-encoding plasmid, efficiencies of transfection of the CHO-AA8 and 293 cells for different IPEC and DNA/lipofectin complex were compared. The maximum efficiency was exhibited by ternary complex DNA/PEI/polyanion where a 1:1 mixture of PA and PA-PEG was used as polyanion. Possible reasons for this effect and further ways of optimization of mixtures for expression of plasmid DNA in the context of the new approach are discussed.  相似文献   

6.
Polyelectrolyte complexes of a synthetic polycation with either a genomic DNA or a synthetic poly(oxyethylene-block-sodium methacrylate), POE-b-PMANa, have been studied in aqueous solutions as a function of cation:anion ratio, the degree of polymerization of the polycation, the ionic strength, and temperature using dynamic light scattering and turbidity measurements. The polycation was a copolymer of methacryl oxyethyl trimethylammonium chloride and poly(oxyethylene) monomethyl ether monomethacrylate with 4-5 oxyethylene repeating units, PMOTAC-g-POE. The molar masses of the polycations in a homological series were 0.3, 0.9, and 2.1 x 10(6) g/ mol. The amount of comonomers with poly(oxyethylene) tails in the copolymers was 15 mol %. The molar mass of the POE-b-PMANa was 75000 g/mol and that of the POE-block was 5000 g/mol. The molar mass of the polycation was shown to have a dramatic effect on the stability and size of the complexes formed by either of the polyanions. An increase in the polycation molar mass shifts the cloud point toward the lower polycation content in the complexes, and a macro phase separation occurs in the solutions with the cation to anion molar ratios much below than 1:1. Increasing the ionic strength has a similar effect. Further addition of salt to turbid and phase-separated solutions results in dissociation of the complexes, and the polyions dissolve as individual macromolecules. The effect of POE on the stability of polyelectrolyte complexes is discussed as well.  相似文献   

7.
DNA can be condensed with an excess of poly-cations in aqueous solutions forming stable particles of submicron size with positive surface charge. This charge surplus can be used to deposit alternating layers of polyanions and polycations on the surface surrounding the core of condensed DNA. Using poly-L-lysine (PLL) and succinylated PLL (SPLL) as polycation and polyanion, respectively, we demonstrated layer-by-layer architecture of the particles. Polyanions with a shorter carboxyl/backbone distance tend to disassemble binary DNA/PLL complexes by displacing DNA while polyanions with a longer carboxyl/backbone distance effectively formed a tertiary complex. The zeta potential of such complexes became negative, indicating effective surface recharging. The charge stoichiometry of the DNA/PLL/SPLL complex was found to be close to 1:1:1, resembling poly-electrolyte complexes layered on macrosurfaces. Recharged particles containing condensed plasmid DNA may find applications as non-viral gene delivery vectors.  相似文献   

8.
A natural polysaccharide schizophyllan (SPG) has been known to form a stable complex with poly(dA). We attached a poly(dA)(80) tail to the both ends of a linear double-stranded DNA, which had been prepared from a plasmid DNA vector. The poly(dA) tailed DNA verified to form complex with SPG by gel electrophoresis and atomic force microscopy (AFM). AFM images indicated that the complexes exhibit a dumbbell-like architecture, that is, quite similar to that of adenovirus genome. The complex demonstrated excellent exonuclease resistance, probably because of the protection effect by SPG complexation.  相似文献   

9.
A new series of linear and permanently charged poly(amidoammonium) salts were synthesized in order to investigate the influence of their ionic and hydrophobic contents on both the cytotoxicity and the transfection mediated by polycation-DNA complexes. The poly(amidoammonium) salts were prepared by chemical modification of a parent poly(amidoamine) containing two tertiary amino groups per structural unit: one incorporated into the main chain and the other fixed at the end of a short bismethylene spacer. The permanent charges were introduced through a quaternization reaction involving iodomethane or 1-iodododecane as an alkylating agent. Under appropriate conditions, the methylation reaction was found to be regioselective, allowing the quaternization of either the side chains or both the side chains and the backbone. Under physiological salt conditions (150 mM NaCl), all of the poly(amidoammonium) salts self-assembled with DNA to form complexes. High proportions of highly quaternized polycation provided better defined morphology to the polycation-DNA complexes. Complexes formed from unquaternized polycation were less cytotoxic than branched poly(ethyleneimine) (25 kDa). At high polycation-DNA weight ratios, the introduction of permanent charges generated a significant increase in the cytotoxicity, but no patent correlation could be established with the amount and the position of the permanent charges. Only complexes formed from polycations with quaternized backbone were able to generate significant gene expression, which was putatively attributed to a better defined toroidal-like morphology together with a higher stability, as suggested by zeta potential measurements. The incorporation of dodecane side chains on highly charged polycations severely amplified the cytotoxicity so that, in return, the transfection level was dramatically affected.  相似文献   

10.
A new approach to optimization of mixtures for the condensation and introduction of plasmid DNA into eukaryotic cells is proposed, which is based on the formation of ternary interpolyelectrolyte complexes (IPEC) DNA/polycation/polyanion. Polyethyleneimine (PEI) with M30–40 kDa as polycation and polyacrylic acid (PA) with M20 kDa or its grafted copolymer with polyethyleneglycol (PEG) as polyanion were used, and ternary complexes with various ratios of the components were prepared. The PA–PEG incorporation into a ternary complex (by itself or as a 1 : 1 mixture with PA) was shown to confer the solubility onto complexes in a wide range of DNA/PEI ratios. Incorporation of even minute amounts of PA–PEG (as a 1 : 9 mixture with PA), while not completely preventing the aggregation of ternary IPEC, drastically changed their sorption characteristics. Using a -galactosidase-encoding plasmid, efficiencies of transfection of the CHO-AA8 and 293 cells for different IPEC and DNA/lipofectin complex were compared. The maximum efficiency was exhibited by ternary complex DNA/PEI/polyanion where a 1 : 1 mixture of PA and PA–PEG was used as polyanion. Possible reasons for this effect and further ways of optimization of mixtures for expression of plasmid DNA in the context of the new approach are discussed.  相似文献   

11.
Spectroscopic properties of single-stranded DNA/schizophyllan ternary complexes (ss-DNA2s-SPG), induced by addition of either complementary or noncomplementary strands, have been investigated. The addition of the complementary strands to ss-DNA2s-SPG induced the quick release of the bound ss-DNA to the complementary strands (both DNA and RNA), whereas the ternary complex was unaffected upon addition of noncomplementary strands. Our experiments imply that SPG has complexation properties indispensable to the gene carriers. As far as we know, there is no report on exploitation of such nonviral gene carriers that can accomplish an intelligent release of the bound ss-DNA toward the complementary strands. We believe, therefore, that SPG, a natural and neutral polysaccharide, has a great potential to become a new ss-DNA carrier.  相似文献   

12.
13.
Intermolecular complexes of genomic polydisperse DNA with synthetic polycations have been studied. Two cationic polymers have been used, a homopolymer poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its analogue grafted with poly(oxyethylene). The amount of poly(oxyethylene) grafts in the copolymer was 15 mol % and Mw of the graft was 200 g/mol. Salmon DNA (sodium salt) was used. The average molecular weight (Mw) of DNA was 10.4 x 10(6) g/mol. Conductivity, pH, and dynamic light scattering studies were used to characterize the complexes. The size and shape of the polyelectrolyte complex particles have been studied as a function of the cation-to-anion ratio in aqueous solutions of varying ionic strengths. The polyelectrolyte complexes have extremely narrow size distributions taking into account the polydispersity of the polyelectrolytes studied. The poly(oxyethylene) grafts on PMOTAC promote the formation of small colloidally stabile complex particles. Addition of salt shifts the macroscopic phase separation toward lower polycation content; that is, complexes partly phase separate with the mixing ratios far from 1:1. Further addition of salt to the turbid, partly phase separated solution results in the dissociation of complexes and the polycation and DNA dissolve as individual chains.  相似文献   

14.
We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to -21 mV), which became neutral or positive as 0.5 microgram or a higher amount of poly-L-lysine (PLL, MW 29300 or MW 204000) was added (-3.16+/-3.47 to +6.04+/-2.23 mV). However, the complexes of CAT plasmid DNA (1 microgram) and PLL MW 29300 (0.5 microgram or higher) were neutral or positively charged (-3.22+/-2.3 to +6.55+/-0.64 mV), which remained the same as 6.6 nmol of the liposomes was added. The complexes formed between two positively charged compounds, PLL MW 29300 (0.5 microgram) and the liposomes (3-20 nmol), were as closely positively charged as DNA/PLL or DNA/liposomes/PLL complexes (+3.31+/-0.41 to 7.16+/-1.0 mV). These results indicate that PLL determined the overall charge of the DNA/liposome/PLL ternary complexes. The complexes formed with histone (0.75 microgram or higher) were also positively charged, whose transfection activity was as high as PLL MW 29300. However, the complexes formed with protamine or PLL MW 2400 remained negatively charged. These observations are in good agreement with the transfection activity of the formulation containing each polycationic polymer. The presence of PLL MW 29300 did not change the hydrodynamic diameter of DNA/liposome/PLL complexes (d(H)=275-312 nm). The complexes made of different sizes of PLL (MW 2400 and 204000) also did not significantly change their size. This suggests that DNA condensation may not be critical. Therefore, zeta of the transfection complex can predict the transfection efficiency of a new formulation or reagent.  相似文献   

15.
Bacterial and synthetic DNAs, containing CpG dinucleotides in specific sequence contexts, activate the vertebrate immune system. Unlike phosphorothioate (PS) CpG DNAs, phosphodiester (PO) CpG DNAs require either palindromic sequences and/or poly(dG) sequences at the 3(')-end for activity. Here, we report 'PO-immunomers' having two PO-CpG DNA molecules joined through their 3(')-ends. These PO-imunomers permitted us, for the first time, to assess immunostimulatory properties of PO-CpG DNAs in vitro and in vivo without the need for palindromic and/or poly(dG) sequences. In medium containing 10% fetal bovine serum, PO-immunomers were more resistant than PO-CpG DNAs to nucleases. Compared to PS-CpG DNA in BALB/c and C3H/HeJ mice spleen cell culture assays, PO-immunomers showed increased IL-12 secretion and minimal amounts of IL-6 secretion. PO-immunomers activated NF-kappa B and induced cytokine secretion in J774 cell cultures. In addition, PO-immunomers showed antitumor activity in nude mice bearing human breast (MCF-7) and prostate (DU145) cancer xenografts.  相似文献   

16.
The calf thymus DNA polymerase-alpha-primase complex purified by immunoaffinity chromatography catalyzes the synthesis of RNA initiators on phi X174 single-stranded viral DNA that are efficiently elongated by the DNA polymerase. Trace amounts of ATP and GTP are incorporated into products that are full length double-stranded circular DNAs. When synthetic polydeoxynucleotides are used as templates, initiation and DNA synthesis occurs with both poly(dT) and poly(dC), but neither initiation nor DNA synthesis was observed with poly(dA) and poly(dI) templates. Nitrocellulose filter binding and sucrose gradient centrifugation studies show that the DNA polymerase-primase complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Using d(pA)-50 with 3'-oligo(dC) tails and d(pI)-50 with 3'-oligo(dT) tails, initiator synthesis and incorporation of deoxynucleotide can be demonstrated when the average pyrimidine sequence lengths are 8 and 4, respectively. These results suggest that purine polydeoxynucleotides are used as templates by the DNA polymerase only after initiation has occurred on the oligodeoxypyrimidine sequence and that the pyrimidine stretch required by the primase activity is relatively short. Analysis of initiator chain length with poly(dC) as template showed a series of oligo(G) initiators of 19-27 nucleotides in the absence of dGTP, and 5-13 nucleotides in the presence of dGTP. The chain length of initiators synthesized by the complex when poly(dT) or oligodeoxythymidylate-tailed poly(dI) was used can be as short as a dinucleotide. Analysis of the products of replication of oligo(dC)-tailed poly(dA) shows that initiator with chain length as low as 4 can be used for initiation by the polymerase-primase complex.  相似文献   

17.
Cationic starch nanoparticles were obtained by aqueous polyelectrolyte complex formation between cationic quaternary ammonium substituted starches and anionic sodium tripolyphosphate. The formation of nanosized starch particles of spherical shape was verified by dynamic light scattering and scanning electron microscopy measurements. The cationic starch nanoparticles of different constitution and containing various contents of free quaternary ammonium groups were produced and their zeta potential was modulated between +4 mV and +34 mV by varying polycation/polyanion ratio. Furthermore, the polyelectrolyte complex formation was confirmed by differential scanning calorimetry and FTIR analyses. The thermal stability of cationic starch nanoparticles increased with the introduction of polysalt into polyelectrolyte complex. The solubilization capacity of nanoparticles was varying with the concentration and composition as revealed by fluorescence probe experiments. The capability to accommodate hydrophobic pyrene quest molecule was decreasing with the increasing number of cationic groups in cationic starches and little depended on polyanion/polycation ratio in starch nanoparticles.  相似文献   

18.
19.
Schizophyllan (SPG) is one of the water soluble beta-1,3-glucans and has a peculiar molecular recognition capability, namely, the single stranded SPG (s-SPG) can form a stoichiometric complex with certain polynucleotides such as poly(C) and poly(A), although it cannot bind poly(G) and poly(dC) at all. In this paper, we prepared an s-SPG-appended column and made an attempt to separate polynucleotides on the bases of this molecular recognition capability. The s-SPG-appended column trapped only such RNAs that could form the complex with s-SPG but eluted other RNAs which did not form the complex. Encouraged by the results in the model system, we extended the s-SPG-appended column into separation of native messenger RNAs (mRNAs) from a RNA mixture (total RNA) obtained from yeast. Since eukaryotic mRNAs have a poly(A) tail with 150-300 bases, we supposed that the tails would be trapped by the s-SPG-appended column. The results indicate that mRNAs were separated from total RNA in good yield and with high purity. It should be emphasized that this is the first device to separate natural mRNAs without using a dA/dT Watson-Crick-type interaction.  相似文献   

20.
During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold depending on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号