首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Vass  D Kirilovsky  A L Etienne 《Biochemistry》1999,38(39):12786-12794
We studied the effect of UV-B radiation (280-320 nm) on the donor- and acceptor-side components of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803 by measuring the relaxation of flash-induced variable chlorophyll fluorescence. UV-B irradiation increases the t(1/2) of the decay components assigned to reoxidation of Q(A)(-) by Q(B) from 220 to 330 micros in centers which have the Q(B) site occupied, and from 3 to 6 ms in centers with the Q(B) site empty. In contrast, the t(1/2) of the slow component arising from recombination of the Q(A)Q(B)(-) state with the S(2) state of the water-oxidizing complex decreases from 13 to 1-2 s. In the presence of DCMU, fluorescence relaxation in nonirradiated cells is dominated by a 0.5-0.6 s component, which reflects Q(A)(-) recombination with the S(2) state. After UV-B irradiation, this is partially replaced by much faster components (t(1/2) approximately 800-900 micros and 8-10 ms) arising from recombination of Q(A)(-) with stabilized intermediate photosystem II donors, P680(+) and Tyr-Z(+). Measurement of fluorescence relaxation in the presence of different concentrations of DCMU revealed a 4-6-fold increase in the half-inhibitory concentration for electron transfer from Q(A) to Q(B). UV-B irradiation in the presence of DCMU reduces Q(A) in the majority (60%) of centers, but does not enhance the extent of UV-B damage beyond the level seen in the absence of DCMU, when Q(A) is mostly oxidized. Illumination with white light during UV-B treatment retards the inactivation of PSII. However, this ameliorating effect is not observed if de novo protein synthesis is blocked by lincomycin. We conclude that in intact cyanobacterium cells UV-B light impairs electron transfer from the Mn cluster of water oxidation to Tyr-Z(+) and P680(+) in the same way that has been observed in isolated systems. The donor-side damage of PSII is accompanied by a modification of the Q(B) site, which affects the binding of plastoquinone and electron transport inhibitors, but is not related to the presence of Q(A)(-). White light, at the intensity applied for culturing the cells, provides protection against UV-B-induced damage by enhancing protein synthesis-dependent repair of PSII.  相似文献   

2.
Vavilin DV  Vermaas WF 《Biochemistry》2000,39(48):14831-14838
The lumenal CD-loop region of the D2 protein of photosystem II contains residues that interact with the primary electron donor P680 and the redox active tyrosyl residue Y(D). Photosystem II properties were studied in a number of photoautotrophic mutants of Synechocystis sp. PCC 6803, most of which carried combinatorial mutations in residues 164-170, 179-186, or 187-194 of the D2 protein. To facilitate characterization of photosystem II properties in the mutants, the CD-loop mutations were introduced into a photosystem I-less background. According to variable fluorescence decay measurements in DCMU-treated cells, charge recombination of Q(A)(-) with the donor side was faster in the majority of mutants (t(1/2) = 45-140 ms) than in the control (t(1/2) = 180 ms). However, in one mutant (named C7-3), the decay of Q(A)(-) was 2 times slower than in the control (t(1/2) = 360 ms). The decay half-time of each mutant correlated with the yield of the Q-band of thermoluminescence (TL) emitted due to S(2)Q(A)(-) charge recombination. The C7-3 mutant had the highest TL intensity, whereas no Q-band was detected in the mutants with fast Q(A)(-) decay (t(1/2) = 45-50 ms). The correlated changes in the rate of recombination and in TL yield in these strains suggest the existence of a nonradiative pathway of charge recombination between Q(A)(-) and the donor side. This may involve direct electron transfer from Q(A)(-) to P680(+) in a way not leading to formation of excited chlorophyll. Many mutations in the CD-loop appear to increase the equilibrium P680(+) concentration during the lifetime of the S(2)Q(A)(-) state, for example, by making the midpoint potential of the P680(+)/P680 redox couple more negative. The nonradiative charge recombination pathway involves a low activation energy and is less temperature-dependent than the formation of excited P680 that leads to TL emission. Therefore, during the TL measurements in these mutants, the S(2)Q(A)(-) state can recombine nonradiatively before temperatures are reached at which radiative charge recombination becomes feasible. The results presented here highlight the presence of two charge recombination pathways and the importance of the CD-loop of the D2 protein in determination of the energy gap between the P680(+)S(1) and P680S(2) states.  相似文献   

3.
Ginet N  Lavergne J 《Biochemistry》2001,40(6):1812-1823
The equilibrium and kinetic parameters for the binding of various inhibitors to the Q(B) pocket of the bacterial reaction center were investigated in chromatophores from Rhodobacter capsulatus and Rhodobacter sphaeroides. By monitoring the near-IR absorption changes specific to Q(A)(-) and Q(B)(-), we measured the fraction of inhibited centers in the dark and the kinetics and extent of inhibitor displacement after one flash due to the formation of the Q(A)Q(B)(-) state. The inhibitor release rate was much faster for triazines and o-phenanthroline (t(1/2) in the 50 ms to 1 s range) than for stigmatellin (t(1/2) approximately 20 s). For inhibitors with a rapid release rate, the fast phase of P(+) decay observed in the absence of secondary donor reflects the competition between P(+)Q(A)(-) recombination and inhibitor release: it is thus faster than the P(+)Q(A)(-) recombination, and its relative extent is smaller than the fraction of initially inhibited centers. At appropriate inhibitor concentrations, one can have almost total binding in the dark and almost total inhibitor displacement after one flash. Under such conditions, a pair of closely spaced flashes resets the two-electron gate in a single state (Q(A)Q(B)(-)), irrespective of the initial state. The apparent dissociation constant of terbutryn was significantly increased (by a factor of 4-7) in the presence of Q(A)(-), in agreement with the conclusion of Wraight and co-workers [Stein, R. R., et al. (1984) J. Cell. Biochem. 24, 243-259]. We suggest that this effect is essentially due to a tighter binding of ubiquinone in the Q(A)(-) state.  相似文献   

4.
In the native purple bacterial reaction center (RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* --> P+ H(A)-) in approximately 3 ps. This is followed by electron transfer to the A-side quinone (P+ H(A)- --> P+ Q(A)-) in approximately 200 ps, with an overall quantum yield of approximately 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208)F/L(M212)H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+ H(B)-. The rate of the P+ H(B)- --> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+ H(A)- --> ground state. The rate of P+ H(B)- --> P+ Q(B)- electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+ H(A)- --> P+ Q(A)-. The yield of P+ H(B)- --> P+ Q(B)- electron-transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+ H(B)- from P in YFH RCs, gives an overall yield of 13% for B-side charge separation P* --> P+ H(B)- --> P+ Q(B)- in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at approximately 1 ms in YFH and wild-type RCs.  相似文献   

5.
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.  相似文献   

6.
Chlorophyll a fluorescence rise (FLR) measured in vivo in dark-adapted plant tissue immediately after the onset of high light continuous illumination shows complex O-K-J-I-P transient. The steps typically appear at about 400 micros (K), 2 ms (J), 30 ms (I), and 200 - 500 ms (P) and a transient decrease of fluorescence to local minima (dips D) can be observed after the K, J, and I steps. As the FLR reflects a function of photosystem II (PSII) and to more understand the FLR, a PSII reactions model was formulated comprising equilibrium of excited states among all light harvesting and reaction centre pigments and P680, reversible radical pair formation and the donor and acceptor side functions. Such a formulated model is the most detailed and complex model of PSII reactions used so far for simulations of the FLR. By varying of selected model parameters (rate constants and initial conditions) several conclusions can be made as for the origin of and changes in shape of the theoretical FLR and compare them with in-literature-reported results. For homogeneous population of PSII and using standard in-literature-reported values of the model parameters, the simulated FLR is characterized by reaching the minimal fluorescence F(0) at about 3 ns after the illumination is switched on lasting to about 1 micros, followed by fluorescence rise to a plateau located at about 2 ms and subsequent fluorescence rise to a global maximum that is reached at about 60 ms. Varying of the values of rate constants of fast processes that can compete for utilization of the excited states with fluorescence emission does not change qualitatively the shape of the FLR. However, primary photochemistry of PSII (the charge separation, recombination and stabilization), non-radiative loss of excited states in light harvesting antennae and excited states quenching by oxidized plastoquisnone (PQ) molecules from the PQ pool seem to be the main factors controlling the maximum quantum yield of PSII photochemistry as expressed by the F(V)/F(M) ratio. The appearance of the plateau at about 2 ms in the FLR is affected by several factors: the height of the plateau in the FLR increases when the fluorescence quenching by oxidized P680(+) is not considered in the simulations or when the electron transfer from Q(A)(-) to Q(B)((-)) is slowed down whereas the height of the plateau decreases and its position is shifted to shorter times when OEC is initially in higher S state. The plateau at about 2 ms is changed into the local fluorescence maximum followed by a dip when the fluorescence quenching by oxidized PQ molecules or the charge recombination between P680(+) and Q(A)(-) is not considered in the simulations or when all OEC is initially in the S(0) state or when the S -state transitions of OEC are slowed down. Slowing down of the S -state transitions of OEC as well as of the electron transfer from Q(A)(-) to Q(B)((-)) also causes a decrease of maximal fluorescence level. In the case of full inhibition of the S -state transitions of OEC as well as in the case of full inhibition of the electron donation to P680(+) by Y(Z), the local fluorescence maximum becomes the global fluorescence maximum. Assuming homogeneous PSII population, theoretical FLR curve that only far resembles experimentally measured O-J-I-P transient at room temperature can be simulated when slowly reducing PQ pool is considered. Assuming heterogeneous PSII population (i.e. the alpha/beta and the Q(B) -reducing/Q(B)-non-reducing heterogeneity and heterogeneity in size of the PQ pool and rate of its reduction) enables to simulate the FLR with two steps between minimal and maximal fluorescence whose relative heights are in agreement with the experiments but not their time positions. A cause of this discrepancy is discussed as well as different approaches to the definition of fluorescence signal during the FLR.  相似文献   

7.
The coupling between electron transfer and protein dynamics has been studied in photosynthetic reaction centers (RC) from Rhodobacter sphaeroides by embedding the protein into room temperature solid trehalose-water matrices. Electron transfer kinetics from the primary quinone acceptor (Q(A)(-)) to the photoxidized donor (P(+)) were measured as a function of the duration of photoexcitation from 20 ns (laser flash) to more than 1 min. Decreasing the water content of the matrix down to approximately 5x10(3) water molecules per RC causes a reversible four-times acceleration of P(+)Q(A)(-) recombination after the laser pulse. By comparing the broadly distributed kinetics observed under these conditions with the ones measured in glycerol-water mixtures at cryogenic temperatures, we conclude that RC relaxation from the dark-adapted to the light-adapted state and thermal fluctuations among conformational substates are hindered in the room temperature matrix over the time scale of tens of milliseconds. When the duration of photoexcitation is increased from a few milliseconds to the second time scale, recombination kinetics of P(+)Q(A)(-) slows down progressively and becomes less distributed, indicating that even in the driest matrices, during continuous illumination, the RC is gaining a limited conformational freedom that results in partial stabilization of P(+)Q(A)(-). This behavior is consistent with a tight structural and dynamical coupling between the protein surface and the trehalose-water matrix.  相似文献   

8.
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.  相似文献   

9.
Kinetics and pathways of charge recombination in photosystem II   总被引:8,自引:0,他引:8  
The mechanism of charge recombination of the S(2)Q(A)(-) state in photosystem II was investigated by modifying the free energy gap between the quinone acceptor Q(A) and the primary pheophytin acceptor Ph. This was done either by changing the midpoint potential of Ph (using mutants of the cyanobacterium Synechocystis with a modified hydrogen bond to this cofactor), or that of Q(A) (using different inhibitors of the Q(B) pocket). The results show that the recombination rate is dependent on the free energy gap between Ph and Q(A), which confirms that the indirect recombination pathway involving formation of Ph(-) has a significant contribution. In the mutant with the largest free energy gap, direct electron transfer from Q(A)(-) to P(+) predominates. The temperature dependence of the recombination rate was investigated, showing a lower activation enthalpy in this mutant compared with the WT. The data allow the determination of the rate of the direct route and of its relative weight in the various strains. The set of currently accepted values for the midpoint potentials of the Q(A)/Q(A)(-), Ph/Ph(-), and P(+)/P* couples is not consistent with the relatively rapid rate of the indirect recombination pathway found here, nor with the 3% yield of delayed fluorescence as previously estimated by de Grooth and van Gorkom (1981, Biochim. Biophys. Acta 635, 445-456). It is argued that a likely explanation is that the midpoint potentials of the two latter couples are more positive than believed due to electrostatic interactions. If such is the case, the estimation of the midpoint potential of the P(+)/P and S(2)/S(1) couples must also be revised upward, with values of 1260 and 1020 mV, respectively.  相似文献   

10.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 degrees C, 40 s). Under these circumstances, the K peak (approximately F(400 micros)) appears in the chl a fluorescence (OJIP) transient reflecting partial Q(A) reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating Q(A)(-) accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this Q(A)(-) accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t(1/2) approximately 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

11.
Ginet N  Lavergne J 《Biochemistry》2000,39(51):16252-16262
The apparent equilibrium constant K'(2) for electron transfer between the primary (Q(A)) and secondary (Q(B)) quinone acceptors of the reaction center was measured in chromatophores of Rhodobacter capsulatus. In the presence of the oxidized primary donor P(+), we obtained a value of K'(2)(P(+)) approximately 100 at pH 7.2, based on the rates of recombination from P(+)Q(A-) and P(+)Q(B-). K'(2) was also measured in the presence of reduced P, from the damping of semiquinone oscillations during a series of single turnover flashes. A 5-fold smaller value, K'(2)(P) approximately 20, was found. Additional information on the interactions between the donor and acceptor sides was obtained by measuring the shift of the midpoint potential of P caused by the presence of Q(B-) or Q(A-)S (where S indicates the presence of the inhibitor stigmatellin). A stabilization of the oxidized state P(+) was observed in both instances, by 10 mV for Q(B-) and 30 mV for Q(A-)S. The larger stabilization of P(+)Q(A-)S with respect to P(+)Q(B-) does not account for the effect of P(+)/P on K'(2). Analysis of these results indicates that the interactions between P(+)/P and Q(A)/Q(A)(-) are markedly modified depending on the occupancy of the Q(B) pocket by ubiquinone or by stigmatellin. We propose that the large value of K'(2)(P(+)) results essentially from a conformational destabilization of the P(+)Q(A-) state, that is relieved when the proximal site of the Q(B) pocket is occupied by stigmatellin.  相似文献   

12.
The redox midpoint potential (E (m)) of the primary quinone of bacterial reaction centers, Q(A), in native membranes (chromatophores) measured by redox potentiometry is reported to be pH dependent (-60 mV/pH) up to a highly distinctive pK ( a ) (9.8 in Rba. sphaeroides) for the reduced state. In contrast, the E (m) of Q(A) in isolated RCs of Rba. sphaeroides, although more variable, has been found to be essentially pH-independent by both redox potentiometry and by delayed fluorescence, which determines the free energy (DeltaG (P*A)) of the P(+)Q (A) (-) state relative to P*. Delayed fluorescence was used here to determine the free energy of P(+)Q (A) (-) in chromatophores. The emission intensity in chromatophores is two orders of magnitude greater than from isolated RCs largely due to the entropic effect of antenna pigments "drawing out" the excitation from the RC. The pH dependence of DeltaG (P*A) was almost identical to that of isolated RCs, in stark contrast with potentiometric redox titrations of Q(A). We considered that Q(A) might be reduced by disproportionation with QH(2) through the Q(B) site, so the titration actually reflects the quinone pool, giving the -60 mV/pH unit dependence expected for the Q/QH(2) couple. However, the parameters necessary to achieve a strong pH-dependence are not in good agreement with expected properties of Q(A) and Q(B). We also consider the possibility that the time scale of potentiometric titrations allows the reduced state (Q (A) (-) ) to relax to a different conformation that is accompanied by stoichiometric H(+) binding. Finally, we discuss the choice of parameters necessary for determining the free energy level of P(+)Q (A) (-) from delayed fluorescence emission from chromatophores of Rba. sphaeroides.  相似文献   

13.
Its superior quantum efficiency renders PSII a model for biomimetic systems. However, also in biological water oxidation by PSII, the efficiency is restricted by recombination losses. By laser-flash illumination, the secondary radical pair, P680(+)Q(-) (A) (where P680 is the primary Chl donor in PSII and Q(A), primary quinone acceptor of PSII), was formed in close to 100% of the PSII. Investigation of the quantum efficiency (or yield) of the subsequent steps by time-resolved delayed (10 micros to 60 ms) and prompt (70 micros to 700 ms) Chl fluorescence measurements on PSII membrane particles suggests that (1) the effective rate for P680(+) Q(-) (A) recombination is approximately 5 ms(-1) with an activation energy of approximately 0.34 eV, circumstantially confirming dominating losses by reformation of the primary radical pair followed by ground-state recombination. (2) Because of compensatory influences on recombination and forward reactions, the efficiency is only weakly temperature dependent. (3) Recombination losses are several-fold enhanced at lower pH. (4) Calculation based on delayed-fluorescence data suggests that the losses depend on the state of the water-oxidizing manganese complex, being low in the S(0)-->S(1) and S(1)-->S(2) transition, clearly higher in S(2)-->S(3) and S(3)-->S(4)-->S(0). (5) For the used artificial electron acceptor, the efficiency is limited by acceptor-side processes/S-state decay at high/low photon-absorption rates resulting in optimal efficiency at surprisingly low rates of approximately 0.15-15 photons s(-1) (per PSII). The pH and S-state dependence can be rationalized by the basic model of alternate electron-proton removal proposed elsewhere. A physiological function of the recombination losses could be limitation of the lifetime of the reactive donor-side tyrosine radical (Y(.) (Z)) in the case of low-pH blockage of water oxidation.  相似文献   

14.
We report the application of a targetable green fluorescent protein-based cellular halide indicator. Fluorescence titrations of the purified recombinant yellow fluorescent protein YFP-H148Q indicated a pK(a) of 7.14 in the absence of Cl(-), which increased to 7.86 at 150 mM Cl(-). At pH 7.5, YFP-H148Q fluorescence decreased maximally by approximately 2-fold with a K(D) of 100 mM Cl(-). YFP-H148Q had a fluorescence lifetime of 3.1 ns that was independent of pH and [Cl(-)]. Circular dichroism and absorption spectroscopy revealed distinct Cl(-)-dependent spectral changes indicating Cl(-)/YFP binding. Stopped-flow kinetic analysis showed a biexponential time course of YFP-H148Q fluorescence (time constants <100 ms) in response to changes in pH or [Cl(-)], establishing a 1:1 YFP-H148Q/Cl(-) binding mechanism. Photobleaching analysis revealed a millisecond triplet state relaxation process that was insensitive to anions and aqueous-phase quenchers. The anion selectivity sequence for YFP-H148Q quenching (ClO(4)(-) approximately I(-) > SCN(-) > NO(3)(-) > Cl(-) > Br(-) > formate > acetate) indicated strong binding of weakly hydrated chaotropic ions. The biophysical data suggest that YFP-H148Q anion sensitivity involves ground state anion binding to a site close to the tri-amino acid chromophore. YFP-H148Q transfected mammalian cells were brightly fluorescent with cytoplasmic/nuclear staining. Ionophore calibrations indicated similar YFP-H148Q pH and anion sensitivities in cells and aqueous solutions. Cyclic AMP-regulated Cl(-) transport through plasma membrane cystic fibrosis transmembrane conductance regulator Cl(-) channels was assayed with excellent sensitivity from the time course of YFP-H148Q fluorescence in response to extracellular Cl(-)/I(-) exchange. The green fluorescent protein-based halide sensor described here should have numerous applications, such as anion channel cloning by screening of mammalian expression libraries and discovery of compounds that correct the cystic fibrosis phenotype by screening of combinatorial libraries.  相似文献   

15.
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.  相似文献   

16.
Despite intensive research for decades, the trapping mechanism in the core complex of purple bacteria is still under discussion. In this article, it is attempted to derive a conceptionally simple model that is consistent with all basic experimental observations and that allows definite conclusions on the trapping mechanism. Some experimental data reported in the literature are conflicting or incomplete. Therefore we repeated two already published experiments like the time-resolved fluorescence decay in LH1-only purple bacteria Rhodospirillum rubrum and Rhodopseudomonas viridis chromatophores with open and closed (Q(A)(-)) reaction centers. Furthermore, we measured fluorescence excitation spectra for both species under the two redox-conditions. These data, all measured at room temperature, were analyzed by a target analysis based on a three-state model (antenna, primary donor, and radical pair). All states were allowed to react reversibly and their decay channels were taken into consideration. This leads to seven rate constants to be determined. It turns out that a unique set of numerical values of these rate constants can be found, when further experimental constraints are met simultaneously, i.e. the ratio of the fluorescence yields in the open and closed (Q(A)(-)) states F(m)/F(o) approximately 2 and the P(+)H(-)-recombination kinetics of 3-6 ns. The model allows to define and to quantify escape probabilities and the transfer equilibrium. We conclude that trapping in LH1-only purple bacteria is largely transfer-to-the-trap-limited. Furthermore, the model predicts properties of the reaction center (RC) in its native LH1-environment. Within the framework of our model, the predicted P(+)H(-)-recombination kinetics are nearly indistinguishable for a hypothetically isolated RC and an antenna-RC complex, which is in contrast to published experimental data for physically isolated RCs. Therefore RC preparations may display modified kinetic properties.  相似文献   

17.
The UV-A (320-400 nm) component of sunlight is a significant damaging factor of plant photosynthesis, which targets the photosystem II complex. Here we performed a detailed characterization of UV-A-induced damage in photosystem II membrane particles using EPR spectroscopy and chlorophyll fluorescence measurements. UV-A irradiation results in the rapid inhibition of oxygen evolution accompanied by the loss of the multiline EPR signal from the S(2) state of the water-oxidizing complex. Gradual decrease of EPR signals arising from the Q(A)(-)Fe(2+) acceptor complex, Tyr-D degrees, and the ferricyanide-induced oxidation of the non-heme Fe(2+) to Fe(3+) is also observed, but at a significantly slower rate than the inhibition of oxygen evolution and of the multiline signal. The amplitude of Signal II(fast), arising from Tyr-Z degrees in the absence of fast electron donation from the Mn cluster, was gradually increased during the course of UV-A treatment. However, the amount of functional Tyr-Z decreased to a similar extent as Tyr-D as shown by the loss of amplitude of Signal II(fast) that could be measured in the UV-A-treated particles after Tris washing. UV-A irradiation also affects the relaxation of flash-induced variable chlorophyll fluorescence. The amplitudes of the fast (600 micros) and slow (2 s) decaying components, assigned to reoxidation of Q(A)(-) by Q(B) and by recombination of (Q(A)Q(B))(-) with donor side components, respectively, decrease in favor of the 15-20 ms component, which reflects PQ binding to the Q(B) site. In the presence of DCMU, the fluorescence relaxation is dominated by a 1 s component due to recombination of Q(A)(-) with the S(2) state. After UV-A radiation, this is partially replaced by a much faster component (30-70 ms) arising from recombination of Q(A)(-) with a stabilized intermediate PSII donor, most likely Tyr-Z degrees. It is concluded that the primary damage site of UV-A irradiation is the catalytic manganese cluster of the water-oxidizing complex, where electron transfer to Tyr-Z degrees and P(680)(+) becomes inhibited. Modification and/or inactivation of the redox-active tyrosines and the Q(A)Fe(2+) acceptor complex are subsequent events. This damaging mechanism is very similar to that induced by the shorter wavelength UV-B (280-320) radiation, but different from that induced by the longer wavelength photosynthetically active light (400-700 nm).  相似文献   

18.
Arginine257 (R257), in the de-helix that caps the Q(B) site of the D1 protein, has been shown by mutational studies to play a key role in the sensitivity of Photosystem II (PS II) to bicarbonate-reversible binding of the formate anion. In this article, the role of this residue has been further investigated through D1 mutations (R257E, R257Q, and R257K) in Chlamydomonas reinhardtii. We have investigated the activity of the Q(B) site by studying differences from wild type on the steady-state turnover of PS II, as assayed through chlorophyll (Chl) a fluorescence yield decay after flash excitation. The effects of p-benzoquinone (BQ, which oxidizes reduced Q(B), Q(B)(-) ) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, which blocks electron flow from Q(A)(-) to Q(B)) were measured. The equilibrium constants of the two-electron gate were obtained through thermoluminescence measurements. The thermoluminescence properties were changed in the mutants, especially when observed after pretreatment with 100 microM BQ. A theoretical analysis of the thermoluminescence data, based mainly on the recombination pathways model of Rappaport et al. (2005), led to the conclusion that the free-energy difference for the recombination of Q(B)(-) with S(2) was reduced by 20-40 mV in the three mutants (D1-R257K, D1-R257Q, and D1-R257E); this was interpreted to be due to a lowering of the redox potential of Q(B)/Q(B)(-). Further, since the recombination of Q(A)(-) with S(2) was unaffected, we suggest that no significant change in redox potential of Q(A)/Q(A)(-) occurred in these three mutants. The maximum variable Chl a fluorescence yield is lowered in the mutants, in the order R257K > R257Q > R257E, compared to wild type. Our analysis of the binary oscillations in Chl a fluorescence following pretreatment of cells with BQ showed that turnover of the Q(B) site was relatively unaffected in the three mutants. The mutant D1-R257E had the lowest growth rate and steady-state activity and showed the weakest binary oscillations. We conclude that the size and the charge of the amino acid at the position D1-257 play a role in PS II function by modulating the effective redox potential of the Q(B)/Q(B)(-) pair. We discuss an indirect mechanism mediated through electrostatic and/or surface charge effects and the possibility of more pleiotropic effects arising from decreased stability of the D1/D2 and D1/CP47 interfaces.  相似文献   

19.
The present contribution describes a new experimental setup that permits time-resolved monitoring of the rise kinetics of the relative fluorescence yield, Phi(rel)(t), and simultaneously of the decay of delayed light emission, L(t), induced by strong actinic laser flashes. The results obtained by excitation of dark-adapted samples with a train of eight flashes reveal (a) in suspensions of spinach thylakoids, Phi(rel)(t) exhibits a typical period four oscillation that is characteristic for a dependence on the redox states S(i)() of the water oxidizing complex (WOC), (b) the relative extent of the unresolved "instantaneous" rise to the level (100 ns) at 100 ns and the maximum values of Phi(rel)(t) attained at about 45 s after each actinic flash, (45 s) synchronously oscillate and exhibit the largest values at flash nos. 1 and 5 and minima after flash nos. 2 and 3, (c) opposite effects are observed for the normalized extent of the rise kinetics in the 100 ns to 5 s time domain of relative fluorescence yield, Phi(rel)(5 s) - Phi(rel)(100 ns), i.e., both parameters attain minimum and maximum values after the first/fifth and second/third flash, respectively, and (d) analogous features for the "fast" and "slow" ns-kinetics of the fluorescence rise were observed in suspensions of Chlamydomas reinhardtii cells. A slight phase shift by one flash is ascribed to physiological differences. The applicability of this noninvasive technique to study reactions of photosystem II, especially the reduction kinetics of P680(*)(+) and their dependence on the redox state S(i)() of the WOC, is discussed.  相似文献   

20.
Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores was studied at room temperature and under intermittent illuminations. The decay of delayed fluorescence was constituted of two components; a fast component decayed with a half time of about 8 ms, a slow one decayed in parallel with the reduction of photooxidized bacteriochlorophyll (P+) with a half time of 100-200 ms. The biphasic decay of delayed fluorescence indicated that a rapid equilibrium was established between the primary electron acceptor and the secondary acceptor. In the presence of o-phenanthroline, the time course of the decay of delayed fluorescence was identical with that of the reduction of P+ in reaction center-rich subchromatophore particles, although they did not necessarily coincide with each other in "intact" chromatophores. The intensity of the slow component was increased and the decay was accelerated at basic pH values. Reagents that dissipate the proton gradient across the chromatophore membranes such as carbonylcyanide m-chlorophenylhydrazone (CCCP) and nigericin accelerated the decay of the slow component. These effects are probably resulting from changes in internal pH of chromatophore vesicles. Reagents that dissipate the membrane potential such as CCCP and valinomycin decreased the intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号