首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin 7, a Ca(2+)/GTP-activated membrane fusion protein, is preferentially phosphorylated in intact chromaffin cells, and the levels of annexin 7 phosphorylation increase quantitatively in proportion to the extent of catecholamine secretion. Consistently, various protein kinase C inhibitors proportionately reduce both secretion and phosphorylation of annexin 7 in these cells. In vitro, annexin 7 is quantitatively phosphorylated by protein kinase C to a mole ratio of 2.0, and phosphorylation is extraordinarily sensitive to variables such as pH, calcium, phospholipid, phorbol ester, and annexin 7 concentration. Phosphorylation of annexin 7 by protein kinase C significantly potentiates the ability of the protein to fuse phospholipid vesicles and lowers the half-maximal concentration of calcium needed for this fusion process. Furthermore, other protein kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, and protein-tyrosine kinase pp60(c-)(src), also label annexin 7 with high efficiency but do not have this effect on membrane fusion. In the case of pp60(c-)(src), we note that this kinase, if anything, modestly suppresses the membrane fusion activity of annexin 7. These results thus lead us to hypothesize that annexin 7 may be a positive mediator for protein kinase C action in the exocytotic membrane fusion reaction in chromaffin cells.  相似文献   

2.
The role of guanine nucleotides in catecholamine secretion was investigated in alpha-toxin-permeabilized chromaffin cells. The stable GTP analogues, GTP-gamma-S (guanosine 5'-(gamma-thio)triphosphate) and GMP-PNP (guanosine 5'-(beta,gamma-imido)triphosphate), potentiated calcium-evoked catecholamine release in a dose-dependent manner. This effect was reversed by GDP-beta-S (guanosine 5'-(beta-thio)diphosphate) indicating that a GTP-binding protein plays a modulatory role in the calcium-dependent secretory process in chromaffin cells. Calcium and the phosphorylating nucleotide ATP were both necessary for secretion, even in the presence of GTP analogues, suggesting that the activation of a GTP-regulatory protein alone does not trigger exocytosis in these cells. TPA (12-O-tetradecanoylphorbol-13-acetate), a direct activator of protein kinase C, was found to mimic the effects of the GTP analogues, inducing a dose-dependent potentiation of the calcium-evoked release in alpha-toxin-permeabilized cells. Treatment of the permeabilized cells with sphingosine, a potent inhibitor of protein kinase C, completely abolished the stimulatory effects of both TPA and GTP-gamma-S. Moreover, long term incubation of chromaffin cells with TPA, a treatment which depletes cells of protein kinase C activity, suppressed the stimulatory effects of GTP-gamma-S. Protein kinase C is activated when it becomes membrane-bound in the presence of calcium and diacylglycerol; here, GTP-gamma-S was found to enhance the calcium-induced translocation of protein kinase C to membranes in alpha-toxin-permeabilized cells. These results suggest that guanine nucleotides modulate secretion by activating protein kinase C-linked events in chromaffin cells. Furthermore, the potentiation of calcium-induced secretion in alpha-toxin-permeabilized cells following activation of protein kinase C either directly with TPA or indirectly with GTP analogues provides additional support for the concept that protein kinase C may exert a positive control directly on the intracellular exocytotic machinery.  相似文献   

3.
W Wang  C E Creutz 《Biochemistry》1992,31(41):9934-9939
Annexin I (lipocortin I) binds to secretory granule membranes and promotes their aggregation in a Ca(2+)-dependent manner [Creutz, C. E., et al. (1987) J. Biol. Chem. 262, 1860-1868; Drust, D. S., & Creutz, C. E. (1988) Nature 331, 88-91]. It is also phosphorylated on serine residues when bovine chromaffin cells are stimulated to secrete [Michener, M. L., et al. (1986) J. Biol. Chem. 261, 6548-6555], suggesting phosphorylation may be involved in modulating the function of annexin I. We report here that phosphorylation of the N-terminal tail by protein kinase C strongly inhibits the ability of annexin I to aggregate chromaffin granules by increasing the calcium requirement 4-fold. This inhibition was readily reversed when the protein was dephosphorylated by protein phosphatase 2A. The inhibition was not due to inability of phosphorylated annexin I to bind to chromaffin granules, since the phosphorylated form bound to the granule membrane at slightly lower levels of calcium than the native form. The phosphorylated annexin I also bound to 20% phosphatidylserine/80% phosphatidylcholine vesicles at lower Ca2+ levels than the native form. The inhibitory effect of phosphorylation on the granule aggregating activity of annexin I was found to be amplified by an unusual mechanism: The phosphorylated form inhibited the activity of the unphosphorylated form. The possible importance of the regulation of annexin I activity by phosphorylation in exocytosis is discussed.  相似文献   

4.
The homotypic fusion of yeast vacuoles requires the Rab-family GTPase Ypt7p and its effector complex, homotypic fusion and vacuole protein sorting complex (HOPS). Although the vacuolar kinase Yck3p is required for the sensitivity of vacuole fusion to proteins that regulate the Rab GTPase cycle-Gdi1p (GDP-dissociation inhibitor [GDI]) or Gyp1p/Gyp7p (GTPase-activating protein)-this kinase phosphorylates HOPS rather than Ypt7p. We addressed this puzzle in reconstituted proteoliposome fusion reactions with all-purified components. In the presence of HOPS and Sec17p/Sec18p, there is comparable fusion of 4-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteoliposomes when they have Ypt7p bearing either GDP or GTP, a striking exception to the rule that only GTP-bound forms of Ras-superfamily GTPases have active conformations. However, the phosphorylation of HOPS by recombinant Yck3p confers a strict requirement for GTP-bound Ypt7p for binding phosphorylated HOPS, for optimal membrane tethering, and for proteoliposome fusion. Added GTPase-activating protein promotes GTP hydrolysis by Ypt7p, and added GDI captures Ypt7p in its GDP-bound state during nucleotide cycling. In either case, the net conversion of Ypt7:GTP to Ypt7:GDP has no effect on HOPS binding or activity but blocks fusion mediated by phosphorylated HOPS. Thus guanine nucleotide specificity of the vacuolar fusion Rab Ypt7p is conferred through downstream posttranslational modification of its effector complex.  相似文献   

5.
Activation of the NADPH oxidase was examined in electrically permeabilized human neutrophils exposed to non-hydrolysable guanine nucleotides. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced a marked increase in the rate of O2 consumption, which was partially resistant to staurosporine, an inhibitor of protein kinase C, under conditions where the response to diacylglycerol was virtually abolished. The respiratory burst elicited by GTP[S] was dependent on the presence of ATP and Mg2+, suggesting involvement of phosphorylation reactions. Accordingly, phosphoprotein formation was greatly stimulated by the guanine nucleotide. The polypeptide phosphorylation pattern induced by GTP[S] was similar to, but not identical with, that observed with diacylglycerol, indicating the activation of kinases other than protein kinase C by the guanine nucleotide. The possible involvement of tyrosine kinases was assessed by immunoblotting using anti-phosphotyrosine antibodies. Treatment of electroporated cells with GTP[S] stimulated the accumulation of tyrosine-phosphorylated proteins. This effect was not induced by diacylglycerol, indicating that tyrosine phosphorylation is not secondary to stimulation of protein kinase C. The results indicate that, in neutrophils, activated G-proteins can stimulate tyrosine kinase and/or inhibit tyrosine phosphatase activity. Changes in the amounts of tyrosine-phosphorylated proteins may signal activation of the respiratory burst.  相似文献   

6.
Abstract: Annexin 2 phosphorylated in vitro by protein kinase C has been shown to restore partially catecholamine secretion in streptolysin O-permeabilized chromaffin cells depleted of their protein kinase C activity. This result suggested a phosphorylation of annexin 2 in stimulated cells. Nicotine stimulation induced an increase of 32P incorporation in annexin 2 heavy chain concomitant with catecholamine release. This incorporation results from phosphorylation by protein kinase C because (a) serine was the only phosphorylated residue, (b) 32P incorporation was inhibited by the protein kinase inhibitors H7, GF 109203X, and staurosporine, and (c) activators of this enzyme, 12- O -tetradecanoylphorbol 13-acetate and 1,2-dioctanoylglycerate, increased the incorporation of radioactivity. The phosphorylated heavy chain had an electrophoretic mobility lower than that of the unmodified one, thus allowing determination of the fraction of phosphorylated protein. In the resting state, a significant fraction of annexin 2 heavy chain was phosphorylated, and nicotine stimulation resulted in an activation of both phosphorylation and dephosphorylation. Phosphorylation was largely increased in the presence of okadaic acid, indicating the involvement of type 1 and 2A phosphatases.  相似文献   

7.
Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.  相似文献   

8.
The guanine nucleotide binding properties of rap1 protein purified from human neutrophils were examined using both the protein kinase A-phosphorylated and the non-phosphorylated forms of the protein. Binding of GTP[S] (guanosine 5'-[gamma-thio]triphosphate) or GDP was found to be slow in the presence of free Mg2+, but very rapid in the absence of Mg2+. The binding of guanine nucleotides was found to correlate with the loss of endogenous nucleotide from the rap1 protein, which was rapid in the absence of Mg2+. The relative affinities of GTP and GDP for the binding site on rap1 were modulated by the presence of Mg2+, with a preferential affinity (approx. 15-fold) for GTP observed only in the absence of this bivalent cation. The dissociation of GDP from rap1 was not affected by the G-protein beta/gamma-subunit complex. Phosphorylation of rap1 in vitro by protein kinase A did not modify any of the observed nucleotide-binding parameters. Furthermore, the ability of a cytosolic rap1 GTPase-activating protein to stimulate neutrophil rap1 GTP hydrolysis was not modified by phosphorylation. These data suggest that the activation of rap in vivo may be regulated by the release of endogenous GDP, but that phosphorylation by protein kinase A does not affect guanine nucleotide binding or hydrolysis.  相似文献   

9.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

10.
The effect of GTP on the hydrolysis of [3H]phosphatidyinositol (PI), [3H]phosphatidylinositol-4-phosphate (PIP) and [3H]phosphatidylinositol-4,5-bisphosphate (PIP2) by phospholipase C of rat brain plasma membrane, microsomes and cytosol was determined. Moreover the regulation of PI and PIP phosphorylation by GTP in brain plasma membrane was investigated.In the presence of EGTA PIP2 was actively degradted, opposite to PI and PIP which require Ca2+ for their hydrolysis. Addition of calcium ions in each case caused stimulation of inositide phosphodiesterase(s). GTP independently of calcium ions activates by about 3 times phospholipase C acting on PIP and PIP2 exclusively in the plasma membrane. PI degradation was unaffected by GTP. In the presence of Ca2+ guanine nucleotides have synergistic stimulatory effect on plasma membrane bound phospholipase C acting on PIP2. PIP kinase of brain plasma membrane was stimulated by GTP by about 20–100% in the presence of exogenous and endogenous substrate respectively. PI kinase was negligible activated by about 20% exclusively in the presence of endogenous substrate. These results indicated that guanine nucleotide modulates the level of second messengers as diacylglycerol and IP3 through the activation of phospholipase C acting on PIP2 exclusively in brain plasma membrane. The stimulation of phospholipase C by GTP may occur directly or through the enhancement of substrate level PIP2 due to stimulation of PIP kinase.  相似文献   

11.
We have examined the phosphorylation of the cyclic adenosine 3':5' monophosphate (cAMP) cell surface chemotactic receptor and a 36 kDa membrane-associated protein (p36) in Dictyostelium discoideum. The activity of CAR-kinase, the enzyme responsible for the phosphorylation of the cAMP receptor, was studied in plasma membrane preparations. It was found that, as in intact cells, the receptor was rapidly phosphorylated in membranes incubated with [gamma 32P] adenosine triphosphate (ATP) but only in the presence of cAMP. This phosphorylation was not observed in membranes prepared from cells which did not display significant cAMP binding activity. cAMP could induce receptor phosphorylation at low concentrations, while cyclic guanosine 3':5' monophosphate (cGMP) could elicit receptor phosphorylation only at high concentrations. Neither ConA, Ca2+, or guanine nucleotides had an effect on CAR-kinase. It was also observed that 2-deoxy cAMP but not dibutyryl cAMP induced receptor phosphorylation. The data suggest that the ligand occupied form of the cAMP receptor is required for CAR-kinase activity. Although the receptor is rapidly dephosphorylated in vivo, we were unable to observe its dephosphorylation in vitro. In contrast, p36 was rapidly dephosphorylated. Also, unlike the cAMP receptor, the phosphorylation of p36 was found to be regulated by the addition of guanine nucleotides. Guanosine diphosphate (GDP) enhanced the phosphorylation while guanosine triphosphate (GTP) decreased the radiolabeling of p36 indicating that GTP can compete with ATP for the nucleotide triphosphate binding site of p36 kinase. Thus was verified using radiolabeled GTP as the phosphate donor. Competition experiments with GTP gamma S, ATP, GTP, CTP, and uridine triphosphate (UTP) indicated that the phosphate donor site of p36 kinase is relatively non-specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Membrane fusion between the lamellar bodies and plasma membrane is an obligatory event in the secretion of lung surfactant. Previous studies have postulated a role for annexin A7 (A7) in membrane fusion during exocytosis in some cells including alveolar type II cells. However, the intracellular trafficking of A7 during such fusion is not described. In this study, we investigated association of endogenous A7 with lamellar bodies in alveolar type II cells following treatment with several secretagogues of lung surfactant. Biochemical studies with specific antibodies showed increased membrane-association of cell A7 in type II cells stimulated with agents that increase secretion through different signaling mechanisms. Immuno-fluorescence studies showed increased co-localization of A7 with ABCA3, the lamellar body marker protein. Because these agents increase surfactant secretion through activation of PKC and PKA, we also investigated the effects of PKC and PKA inhibitors, bisindolylmaleimideI (BisI) and H89, respectively, on A7 partitioning. Western blot analysis showed that these inhibitors prevented secretagogue-mediated A7 increase in the membrane fractions. These inhibitors also blocked increased co-localization of A7 with ABCA3 in secretagogue-treated cells, as revealed by immuno-fluorescence studies. In vitro studies with recombinant A7 showed phosphorylation with PKC and PKA. The cell A7 was also phosphorylated in cells treated with surfactant secretagogues. Thus, our studies demonstrate that annexin A7 relocates to lamellar bodies in a phosphorylation-dependent manner. We suggest that activation of protein kinase promotes phosphorylation and membrane-association of A7 presumably to facilitate membrane fusion during lung surfactant secretion.  相似文献   

13.
A number of guanine nucleotide exchange factors have been identified that activate Rho family GTPases, by promoting the binding of GTP to these proteins. We have recently demonstrated that lysophosphatidic acid and several other agonists stimulate phosphorylation of the Rac1-specific exchange factor Tiam1 in Swiss 3T3 fibroblasts, and that protein kinase C is involved in Tiam1 phosphorylation (Fleming, I. N., Elliott, C. M., Collard, J. G., and Exton, J. H. (1997) J. Biol. Chem. 272, 33105-33110). We now show, through manipulation of intracellular [Ca2+] and the use of protein kinase inhibitors, that both protein kinase Calpha and Ca2+/calmodulin-dependent protein kinase II are involved in the phosphorylation of Tiam1 in vivo. Furthermore, we show that Ca2+/calmodulin-dependent protein kinase II phosphorylates Tiam1 in vitro, producing an electrophoretic retardation on SDS-polyacrylamide gel electrophoresis. Significantly, phosphorylation of Tiam1 by Ca2+/calmodulin-dependent protein kinase II, but not by protein kinase C, enhanced its nucleotide exchange activity toward Rac1, by approximately 2-fold. Furthermore, Tiam1 was preferentially dephosphorylated by protein phosphatase 1 in vitro, and treatment with this phosphatase abolished the Ca2+/calmodulin-dependent protein kinase II activation of Tiam1. These data demonstrate that protein kinase Calpha and Ca2+/calmodulin-dependent protein kinase II phosphorylate Tiam1 in vivo, and that the latter kinase plays a key role in regulating the activity of this exchange factor in vitro.  相似文献   

14.
Phosphoinositide hydrolysis was studied in a washed membrane preparation of 1321N1 astrocytoma cells prelabeled with [3H]inositol. GTP gamma S stimulated the formation of [3H]inositol mono-, bis-, and trisphosphate ([3H]InsP, [3H]InsP2, and [3H]InsP3) with a half-maximal effect on [3H]InsP formation at 5 microM. Carbachol increased the accumulation of [3H]inositol phosphates only in the presence of added guanine nucleotide. Calcium increased [3H]InsP3 accumulation over a range of concentrations (10 nM-3 mM free calcium). When 1321N1 cells were treated with phorbol ester (100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA)) prior to preparation of the membranes, the maximal [3H]InsP formation induced by GTP gamma S or GTP gamma S plus carbachol was decreased by 50-75%. In contrast, the response to a maximal calcium concentration presumed to activate phospholipase C directly was minimally inhibited (approximately 15%). PMA treatment did not affect muscarinic receptor affinity for carbachol or the effect of GTP on agonist binding. PMA treatment was also without effect on the breakdown of exogenous [3H]InsP3 in homogenates, permeabilized cells, and membranes, indicating that the InsP3-phosphatase was not the site of phorbol ester action. PMA treatment inhibited [3H] InsP3 formation only in membranes and not in cytosol prepared from the same cells, suggesting a membrane site of PMA action. Membranes were also required to demonstrate GTP gamma S-stimulated [3H]InsP3 formation although calcium-stimulated [3H]InsP3 formation was demonstrable in both membranes and cytosol. The addition of purified protein kinase C to the membranes mimicked the effect of PMA treatment to decrease GTP gamma S-stimulated [3H]InsP3 production. These data indicate that the effect of PMA on phosphoinositide metabolism is demonstrable in a cell-free system and that it can be mimicked by protein kinase C. We suggest that the ability of PMA to block GTP gamma S-stimulated formation of [3H]InsP3 results from inhibition of the G protein interaction with phospholipase C.  相似文献   

15.
Permeabilized adrenal chromaffin cells secrete catecholamines by exocytosis in response to micromolar calcium concentrations. Recently, we have demonstrated that chromaffin cells permeabilized with digitonin progressively lose their capacity to secrete due to the release of certain cytosolic proteins essential for exocytosis (Sarafian T., D. Aunis, and M. F. Bader. 1987. J. Biol. Chem. 34:16671-16676). Here we show that one of the released proteins is calpactin I, a calcium-dependent phospholipid-binding protein known to promote in vitro aggregation of chromaffin granules at physiological micromolar calcium levels. The addition of calpactin I into digitonin- or streptolysin-O-permeabilized chromaffin cells with reduced secretory capacity as a result of the leakage of cytosolic proteins partially restores the calcium-dependent secretory activity. This effect is specific of calpactin I since other annexins (p32, p37, p67) do not stimulate secretion at similar or higher concentrations. Calpactin I requires the presence of Mg-ATP, suggesting that a phosphorylating step may regulate the activity of calpactin. Calpactin is unable to restore the secretory activity in cells which have completely lost their cytosolic protein kinase C or in cells having their protein kinase C inhibited by sphingosine or downregulated by long-term incubation with TPA. In contrast, calpactin I prephosphorylated in vitro by purified protein kinase C is able to reconstitute secretion in cells depleted of their protein kinase C activity. This stimulatory effect is also observed with thiophosphorylated calpactin I which is resistant to cellular phosphatases or with phosphorylated calpactin I introduced into cells in the presence of microcystin, a phosphatase inhibitor. These results suggest that calpactin I is involved in the exocytotic machinery by a mechanism which requires phosphorylation by protein kinase C.  相似文献   

16.
Both GS alpha-1 and GS alpha-4 were phosphorylated by the purified catalytic sub-unit of protein kinase A. Phosphate incorporation into 220 pmol and 190 pmol of GS alpha-4 and GS alpha-1 after a 1 hour incubation with kinase was 14 pmol and 10 pmol, respectively. These low levels of phosphorylation are due to the thermal lability of purified recombinant GS alpha. However, the phosphorylation was inhibited by guanine nucleotides (GDP-beta-S, GppNHp and GTP) and is, therefore, a specific event. We suggest that, as for GS alpha phosphorylation by protein kinase C (Pyne et al., 1992), the guanine nucleotide-free form of GS alpha is the most likely substrate. Guanine-nucleotides reduce the lifetime and, therefore availability for phosphorylation, of guanine-nucleotide free GS alpha. GS alpha phosphorylation by protein kinase A in vitro provides preliminary evidence that a similar phosphorylation of GS alpha may be an important regulatory event in cells.  相似文献   

17.
Y Yada  S Nagao  Y Okano  Y Nozawa 《FEBS letters》1989,242(2):368-372
Phosphoinositide-specific phospholipase C (PLC) activity of human platelet membranes was activated by the nonhydrolyzable guanine nucleotide GTP gamma S. This activation did not occur in either membranes prepared from dibutyryl cyclic AMP-pretreated platelets (A-membranes) or those prepared from untreated cells and subsequently incubated with cyclic AMP (cAMP) (B-membranes). This cAMP-mediated inhibition was abolished in the presence of inhibitors of cAMP-dependent protein kinase (A-kinase), suggesting that the inhibition was due to phosphorylation of (a) protein component(s). No significant differences were observed in the basal PLC activity and the extent of pertussis toxin-catalyzed ADP-ribosylation among control membranes and the two types of phosphorylated membranes (A- and B-membranes). GTP-binding activities of Gs, Gi and GTP-binding proteins of lower molecular masses were not altered by the phosphorylation of the membranes. These findings suggest that a GTP-binding protein is involved in the GTP gamma S-mediated activation of PLC and that cAMP (plus A-kinase) inhibits this activation by phosphorylating a membrane protein (probably a 240-kDa protein), rather than the GTP-binding protein or PLC itself. It is likely that this phosphorylation uncouples the GTP-binding protein from PLC.  相似文献   

18.
Evidence is shown that protein kinase C is the major kinase which can phosphorylate histone H-1 in a membrane fraction prepared from rabbit peritoneal neutrophils. Addition of phorbol-12-myristate-13-acetate (PMA) (0.1 microgram/ml) or guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) to the membrane fraction results in an increase of the phosphorylation of histone H-1. To achieve this effect, calcium (20 microM) is required for GTP gamma S but not for PMA. The effect of GTP gamma S, but not PMA is inhibited in membranes obtained from cells pretreated with pertussis toxin. The kinase activity is also enhanced by treatment of the membrane with 10 microM of GppNHp or GTP but not with GDP, GMP, cGMP, ATP, ADP, AMP and cAMP. This is the first direct evidence that a GTP binding protein is involved in the activation of membrane associated protein kinase C.  相似文献   

19.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   

20.
In neuroendocrine cells, annexin‐A2 is implicated as a promoter of monosialotetrahexosylganglioside (GM1)‐containing lipid microdomains that are required for calcium‐regulated exocytosis. As soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) require a specific lipid environment to mediate granule docking and fusion, we investigated whether annexin‐A2‐induced lipid microdomains might be linked to the SNAREs present at the plasma membrane. Stimulation of adrenergic chromaffin cells induces the translocation of cytosolic annexin‐A2 to the plasma membrane, where it colocalizes with SNAP‐25 and S100A10. Cross‐linking experiments performed in stimulated chromaffin cells indicate that annexin‐A2 directly interacts with S100A10 to form a tetramer at the plasma membrane. Here, we demonstrate that S100A10 can interact with vesicle‐associated membrane protein 2 (VAMP2) and show that VAMP2 is present at the plasma membrane in resting adrenergic chromaffin cells. Tetanus toxin that cleaves VAMP2 solubilizes S100A10 from the plasma membrane and inhibits the translocation of annexin‐A2 to the plasma membrane. Immunogold labelling of plasma membrane sheets combined with spatial point pattern analysis confirmed that S100A10 is present in VAMP2 microdomains at the plasma membrane and that annexin‐A2 is observed close to S100A10 and to syntaxin in stimulated chromaffin cells. In addition, these results showed that the formation of phosphatidylinositol (4,5)‐bisphosphate (PIP2) microdomains colocalized with S100A10 in the vicinity of docked granules, suggesting a functional interplay between annexin‐A2‐mediated lipid microdomains and SNAREs during exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号