首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations of the mitochondrial DNA (mtDNA) are implicated in various pathological conditions. In this study, we used denaturing high performance liquid chromatography (DHPLC) as a method to rapidly screen the entire mtDNA for mutations. Overlapping DNA fragments, amplified by one single cycling protocol from frozen pre-formulated PCR mixes, were subjected to DHPLC analysis. Single DHPLC injections of fragments yielded straightforward interpretation of results with a detection limit down to 1% mtDNA heteroplasmy. Furthermore, collection and re-amplification of low degree heteroduplex peak-fractions allowed sequence analysis of mtDNA mutations down to the detection limit of the DHPLC method. In order to demonstrate that the method has diagnostic value, we analyzed and confirmed known mtDNA mutations in patient samples.  相似文献   

2.
3.
Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.  相似文献   

4.
5.
Sequence analysis of the entire mitochondrial genome in Parkinson's disease   总被引:5,自引:0,他引:5  
The pathogenesis of Parkinson's disease (PD) is largely unknown. Indirect evidence suggests that mutations in mitochondrial DNA (mtDNA) might play a role, but previous studies have not consistently associated any specific mutations with PD. However, these studies have generally been confined to limited areas of the mitochondrial genome. We therefore sequenced the entire mitochondrial genome from substantia nigra of 8 PD and 9 control subjects. Several sequence variants were distributed differently between PD and control subjects, but all were previously reported polymorphisms. Several secondary LHON mutations were found, as well as a number of novel missense mutations, but all were rare and did not differ between PD and control subjects. Finally, PD and control subjects did not differ in the total number of all mutations, nor the total number of missense mutations. Thus, mtDNA involvement in PD, if any, is likely to be complex and should be reconsidered carefully.  相似文献   

6.
Quantification of random mutations in the mitochondrial genome   总被引:1,自引:0,他引:1  
Mitochondrial DNA (mtDNA) mutations contribute to the pathology of a number of age-related disorders, including Parkinson disease [A. Bender et al., Nat. Genet. 38 (2006) 515,Y. Kraytsberg et al., Nat. Genet. 38 (2006) 518], muscle-wasting [J. Wanagat, Z. Cao, P. Pathare, J.M. Aiken, FASEB J. 15 (2001) 322], and the metastatic potential of cancers [K. Ishikawa et al., Science 320 (2008) 661]. The impact of mitochondrial DNA mutations on a wide variety of human diseases has made it increasingly important to understand the mechanisms that drive mitochondrial mutagenesis. In order to provide new insight into the etiology and natural history of mtDNA mutations, we have developed an assay that can detect mitochondrial mutations in a variety of tissues and experimental settings [M. Vermulst et al., Nat. Genet. 40 (2008) 4, M. Vermulst et al., Nat. Genet. 39 (2007) 540]. This methodology, termed the Random Mutation Capture assay, relies on single-molecule amplification to detect rare mutations among millions of wild-type bases [J.H. Bielas, L.A. Loeb, Nat. Methods 2 (2005) 285], and can be used to analyze mitochondrial mutagenesis to a single base pair level in mammals.  相似文献   

7.
Left ventricular noncompaction (LVNC) is a genetically heterogeneous condition and several nuclear loci have been associated with the defect. However, they only account for a small percentage of patients. Existing evidences suggest that pathogenic mitochondrial DNA (mtDNA) mutations and consequent mitochondrial malfunction can be an important component in the etiology of LVNC. To investigate if mtDNA mutation can serve as a primary cause for LVNC, complete nucleotide sequences of mitochondrial genomes from 20 LVNC patients were determined by Illumina parallel sequencing technology and analyzed by MitoMaster. Substitutions of a highly conserved Met31 in ND1 caused by rare mitochondrial single nucleotide polymorphisms (mtSNP) A3397G and T3398C were identified from two LVNC patients. Previously, T3398C has been reported from another LVNC patient, indicating mutations in Met31 in ND1 and resultant defects in complex I can be associated with LVNC. Additionally, three mtSNPs in protein-coding genes, seven variants in rRNA genes, and two transitions in tRNA genes were unrelated to the haplogroup and infrequent in the general population, suggesting that these mtSNPs could also be pathogenic. Our study revealed some mtSNPs could represent pathogenic mutations, lead to compromised mitochondrial function, and be associated with LVNC.  相似文献   

8.
We describe a repetitive DNA region at the 3 end of the mitochondrial DNA (mtDNA) control region and compare it in 21 carnivore species representing eight carnivore families. The sequence and organization of the repetitive motifs can differ extensively between arrays; however, all motifs appear to be derived from the core motif ACGT. Sequence data and Southern blot analysis demonstrate extensive heteroplasmy. The general form of the array is similar between heteroplasmic variants within an individual and between individuals within a species (varying primarily in the length of the array, though two clones from the northern elephant seal are exceptional). Within certain families, notably ursids, the array structure is also similar between species. Similarity between species was not apparent in other carnivore families, such as the mustelids, suggesting rapid changes in the organization and sequence of some arrays. The pattern of change seen within and between species suggests that a dominant mechanism involved in the evolution of these arrays is DNA slippage. A comparative analysis shows that the motifs that are being reiterated or deleted vary within and between arrays, suggesting a varying rate of DNA turnover. We discuss the evolutionary implications of the observed patterns of variation and extreme levels of heteroplasmy.By acceptance of this article, the publisher acknowledges the right of the US Government to retain non-exclusive, royalty-free license in and to any copyright covering the article. Correspondence to: A.R. Hoetzel  相似文献   

9.
《遗传学报》2020,47(3):167-169
正Genetic mitochondrial disorders are a heterogenous group of multi-system disorders caused by an imbalance in mitochondrial function (Moggio et al.,2014;Wallace,2018).In contrast to the nuclear genome,each cell contains hundreds,or even thousands,of mtDNA molecules (Veltri et al.,1990;Calvo et al., 2006).Thus,a mixture of different mtDNA sequences can co-exist within the same individual,a situation referred to as he terop las my.The level of heteroplasmy in an individual often affects the penetrance and phenotypic severity of the diseases.Consequently,detection of sequence heteroplasmy is essential for the proper clinical interpretation of mitochondrial diseases (Stewart and Chinnery,2015).  相似文献   

10.
Somatic mutations have been identified in mitochondrial DNA (mtDNA) of various human primary cancers. However, their roles in the pathophysiology of cancers are still unclear. In our previous study, high frequency of somatic mutations was found in the D-loop region of mtDNA of hepatocellular carcinomas (HCCs). In the present study, we examined 44 HCCs and corresponding non-cancerous liver tissues, and identified 13 somatic mutations in the coding region of mtDNAs from 11 HCC samples (11/44, 25%). Among the 13 mtDNA mutations, six mutations (T6787C, G7976A, A9263G, G9267A, A9545G and A11708G) were homoplasmic while seven mutations (956delC, T1659C, G3842A, G5650A, 11032delA, 12418insA and a 66 bp deletion) were heteroplasmic. Moreover, the G3842A transition created a premature stop codon and the 66 bp deletion could omit 22 amino acid residues in the NADH dehydrogenase (ND) subunit 1 (ND1) gene. The 11032delA and 12418insA could result in frame-shift mutation in the ND4 and ND5 genes, respectively. The T1659C transition in tRNAVal gene and G5650A in tRNAAla gene were reported to be clinically associated with some mitochondrial disorders. In addition, the T6787C (cytochrome c oxidase subunit I, COI), G7976A (COII), G9267A (COIII) and A11708G (ND4) mutations could result in amino acid substitutions in the highly conserved regions of the affected mitochondrial genes. These mtDNA mutations (10/13, 76.9%) have the potential to cause mitochondrial dysfunction in HCCs. Taken these results together, we suggest that there may be a higher frequency of mtDNA mutations in HCC than in normal liver tissues from the same individuals.  相似文献   

11.

Background

The HIV-1 pandemic is not the result of a static pathogen but a large genetically diverse and dynamic viral population. The virus is characterized by a highly mutable genome rendering efforts to design a universal vaccine a significant challenge and drives the emergence of drug resistant variants upon antiviral pressure. Gaining a comprehensive understanding of the mutational tolerance of each HIV-1 genomic position is therefore of critical importance.

Results

Here we combine high-density mutagenesis with the power of next-generation sequencing to gauge the replication capacity and therefore mutational tolerability of single point mutations across the entire HIV-1 genome. We were able to achieve the evaluation of point mutational effects on viral replicative capacity for 5,553 individual HIV-1 nucleotide positions – representing 57% of the viral genome. Replicative capacity was assessed at 3,943 nucleotide positions for a single alternate base change, 1,459 nucleotide positions for two alternate base changes, and 151 nucleotide positions for all three possible alternate base changes. This resulted in the study of how a total of 7,314 individual point mutations impact HIV-1 replication on a single experimental platform. We further utilize the dataset for a focused structural analysis on a capsid inhibitor binding pocket.

Conclusion

The approach presented here can be applied to any pathogen that can be genetically manipulated in a laboratory setting. Furthermore, the methodology can be utilized under externally applied selection conditions, such as drug or immune pressure, to identify genetic elements that contribute to drug or host interactions, and therefore mutational routes of pathogen resistance and escape.
  相似文献   

12.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

13.

Background

Somatic mutation in mitochondrial DNA (mtDNA) has been proposed to contribute to initiation and progression of human cancer. In our previous study, high frequency of somatic mutations was found in the D-loop region of mtDNA of gastric cancers. However, it is unclear whether somatic mutations occur in the coding region of mtDNA of gastric cancers.

Methods

Using DNA sequencing, we studied 31 gastric cancer specimens and corresponding non-cancerous stomach tissues. Moreover, a human gastric cancer SC-M1 cell line was treated with oligomycin to induce mitochondrial dysfunction. Cisplatin sensitivity and cell migration were analyzed.

Results

We identified eight somatic mutations in the coding region of mtDNAs of seven gastric cancer samples (7/31, 22.6%). Patients with somatic mutations in the entire mtDNA of gastric cancers did not show significant association with their clinicopathologic features. Among the eight somatic mutations, five point mutations (G3697A, G4996A, G9986A, C12405T and T13015C) are homoplasmic and three mutations (5895delC, 7472insC and 12418insA) are heteroplasmic. Four (4/8, 50%) of these somatic mutations result in amino acid substitutions in the highly conserved regions of mtDNA, which potentially lead to mitochondrial dysfunction. In addition, in vitro experiments in SC-M1 cells revealed that oligomycin-induced mitochondrial dysfunction promoted resistance to cisplatin and enhanced cell migration. N-acetyl cysteine was effective in the prevention of the oligomycin-enhanced migration, which suggests that reactive oxygen species generated by defective mitochondria may be involved in the enhanced migration of SC-M1 cells.

General Significance

Our results suggest that somatic mtDNA mutations and mitochondrial dysfunction may play an important role in the malignant progression of gastric cancer.  相似文献   

14.
Hu M  Jex AR  Campbell BE  Gasser RB 《Nature protocols》2007,2(10):2339-2344
Exploring mitochondrial (mt) genomes has significant implications for various fundamental research areas, including mt biochemistry and physiology, and, importantly, such genomes provide a rich source of markers for population genetics and systematic studies. Although some progress has been made, there is a paucity of information on mt genomes for many metazoan organisms, particularly invertebrates such as parasitic helminths, which relates mainly to the technical limitations associated with sequencing from tiny amounts of material. In this article, we describe a practical long PCR approach for the amplification and subsequent sequencing of the entire mt genome from individual helminths, which overcomes these limitations. The protocol includes the isolation of genomic DNA, long PCR amplification, electrophoresis and sequencing, and takes approximately 1-3 weeks to carry out. The present user-friendly, cost-effective approach has demonstrated utility to the study of a range of parasites, and has the potential to be applied to a wide range of organisms.  相似文献   

15.
The purpose of this study was to identify novel mitochondrial deoxyribonucleic acid (mtDNA) mutations in a series of patients with clinical and/or morphological features of mitochondrial dysfunction, but still no genetic diagnosis. A heterogeneous group of clinical disorders is caused by mutations in mtDNA that damage respiratory chain function of cell energy production. We developed a method to systematically screen the entire mitochondrial genome. The sequence-data were obtained with a rapid automated system. In the six mitochondrial genomes analysed we found 20 variants of the revised Cambridge reference sequence [Nat. Genet. 23 (1999) 147]. In skeletal muscle nineteen novel mtDNA variants were homoplasmic, suggesting secondary pathogenicity or co-responsibility in determination of the disease. In one patient we identified a novel heteroplasmic mtDNA mutation which presumably has a pathogenic role. This screening is therefore useful to extend the mtDNA polymorphism database and should facilitate definition of disease-related mutations in human mtDNA.  相似文献   

16.
Molecular information is crucial for species identification when facing challenging morphology‐based specimen identifications. The use of DNA barcodes partially solves this problem, but in some cases when PCR is not an option (i.e., primers are not available, problems in reaction standardization), amplification‐free approaches could be an optimal alternative. Recent advances in DNA sequencing, like the MinION device from Oxford Nanopore Technologies (ONT), allow to obtain genomic data with low laboratory and technical requirements, and at a relatively low cost. In this study, we explore ONT sequencing for molecular species identification from a total DNA sample obtained from a neotropical rodent and we also test the technology for complete mitochondrial genome reconstruction via genome skimming. We were able to obtain “de novo” the complete mitogenome of a specimen from the genus Melanomys (Cricetidae: Sigmodontinae) with average depth coverage of 78X using ONT‐only data and by combining multiple assembly routines. Our pipeline for an automated species identification was able to identify the sample using unassembled sequence data (raw) in a reasonable computing time, which was substantially reduced when a priori information related to the organism identity was known. Our findings suggest ONT sequencing as a suitable candidate to solve species identification problems in metazoan nonmodel organisms and generate complete mtDNA datasets.  相似文献   

17.
Mutations of mitochondrial genome are responsible for respiratory chain defects in numerous patients. We have used a strategy, based on the use of a mismatch-specific DNA endonuclease named " Surveyor Nuclease", for screening the entire mtDNA in a group of 50 patients with neuromuscular features, suggesting a respiratory chain dysfunction. We identified mtDNA mutations in 20% of patients (10/50). Among the identified mutations, four are not found in any mitochondrial database and have not been reported previously. We also confirm that mtDNA polymorphisms are frequently found in a heteroplasmic state (15 different polymorphisms were identified among which five were novel).  相似文献   

18.
Summary The entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare) was identified using clone banks that cover the chloroplast and mitochondrial genomes. The mitochondrial fragments that were homologous to chloroplast DNA were mapped and sequenced. The nucleotide sequences around the termini of integrated chloroplast sequences in the rice mtDNA revealed no common sequences or structures that might enhance the transfer of DNA. Sixteen chloroplast sequences, ranging from 32 bases to 6.8 kb in length, were found to be dispersed throughout the rice mitochondrial genome. The total length of these sequences is equal to approximately 6% (22 kb) of the rice mitochondrial genome and to 19% of the chloroplast genome. The transfer of segments of chloroplast DNA seems to have occurred at different times, both before and after the divergence of rice and maize. The mitochondrial genome appears to have been rearranged after the transfer of chloroplast sequences as a result of recombination at these sequences. The rice mitochondrial DNA contains nine intact tRNA genes and three tRNA pseudogenes derived from the chloroplast genome.  相似文献   

19.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

20.
Mitochondrial DNA data have been used extensively to study evolution and early human origins. These applications require estimates of the rate at which nucleotide substitutions occur in the DNA sequence. We consider the problem of estimating substitution rates in the presence of site-to-site rate variation. A coalescent model is presented that allows for different substitution rates for purines and pyrimidines, as well as more detailed models that allow fast and slow rates within each of the purine and pyrimidine classes. A method for estimating such rates is presented. Even for these simple models of site heterogeneity, there are, typically, insufficient data to obtain reliable estimates of site-specific substitution rates. However, estimates of the average rate across all sites appear to be relatively stable even in the presence of site heterogeneity. Simulations of models with site-to-site variation in mutation rate show that hypervariable sites can produce peaks in the pairwise difference curves that have previously been attributed to population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号