首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With immunofluorescence techniques using one anti-rat or two different anti-ovine CRF, the localization of corticotropin-releasing factor (CRF) producing neurons was characterized in frozen sections of pigeon brain. Colchicine was administered intraventricularly at various day hours. The CRF neurons were localized in the telencephalon: lobus parolfactorius, nucleus (n.) accumbens, anterior commissure; in the diencephalon: n. dorso-medialis and lateralis thalami and in different structures of the hypothalamus: n. praeopticus periventricularis and medialis, paraventricularis, supraopticus medialis, lateralis, ectomamillaris and in the stratum cellulare externum. Concerning the hypothalamic localizations, results are discussed in the light of physiological studies on corticotropic regulations in pigeons. Additional populations of CRF neurons were also located in various brainstem areas substantia grisea centralis, locus caeruleus, n. tegmenti dorsalis, sensorius principalis nervi trigemini, vestibularis latetalis, solitarius, nervi hypoglossi, in the dorsal area of the n. pontis lateralis and in the n. paramedianus paragiganto--cellularis, raphes, nervi facialis, subcaeruleus and the area ventralis. These particular localizations may lead to the assumption that CRF might be involved in nervous regulations other than those related to the corticotropic function.  相似文献   

2.
Phosphorylation by cAMP-dependent protein kinase (PKA) and other second messenger-activated protein kinases modulates the activity of a variety of effector proteins including ion channels. Anti-peptide antibodies specific for the alpha 1 subunits of the class B, C or E calcium channels from rat brain specifically recognize a pair of polypeptides of 220 and 240 kDa, 200 and 220 kDa, and 240 and 250 kDa, respectively, in hippocampal slices in vitro. These calcium channels are localized predominantly on presynaptic and dendritic, somatic and dendritic, and somatic sites, respectively, in hippocampal neurons. Both size forms of alpha 1B and alpha 1E and the full-length form of alpha 1C are phosphorylated by PKA after solubilization and immunoprecipitation. Stimulation of PKA in intact hippocampal slices also induced phosphorylation of 25-50% of the PKA sites on class B N-type calcium channels, class C L-type calcium channels and class E calcium channels, as assessed by a back-phosphorylation method. Tetraethylammonium ion (TEA), which causes neuronal depolarization and promotes repetitive action potentials and neurotransmitter release by blocking potassium channels, also stimulated phosphorylation of class B, C and E alpha 1 subunits, suggesting that these three classes of channels are phosphorylated by PKA in response to endogenous electrical activity in the hippocampus. Regulation of calcium influx through these calcium channels by PKA may influence calcium-dependent processes within hippocampal neurons, including neurotransmitter release, calcium-activated enzymes and gene expression.  相似文献   

3.
4.
Sun JY  Wu LG 《Neuron》2001,30(1):171-182
The rate of release from nerve terminals depends on both the number of release sites and the rate of release at each site. The latter remains largely unknown at central synapses. We addressed this issue by simultaneously measuring the nerve terminal membrane capacitance and the postsynaptic current at single calyceal synapses in rat brainstem. We found that a 10 ms presynaptic step depolarization depleted a releasable pool containing 3300-5200 vesicles. Released vesicles were endocytosed with a time constant of a few seconds to tens of seconds. Release of only one third of this pool saturated both postsynaptic AMPA and NMDA receptors. A release site can release more than three vesicles in 10 ms (>300 vesicles per second). We conclude that both a large number of release sites and a fast release rate at each site enable synapses to release at a high rate.  相似文献   

5.
6.
7.
Composite and unitary EPSPs of red nucleus neurons evoked by stimulation of the sensomotor and association parietal cortex and nucleus interpositus of the cerebellum were studied in acute experiments on cats anesthetized with pentobarbital. A monosynaptic connection was shown to exist between not only the sensomotor, but also the association cortex, and rubrospinal neurons, in which unitary EPSPs appeared during stimulation of the association cortex after a latent period of 1.5–2.7 msec, with a peak rise time of 1.1–3.1 msec and an amplitude of 0.22–0.65 mV. Analysis of the temporal characteristics of the unitary EPSP suggested that synapses formed by fibers from the association cortex occupy a position nearer the soma than synapses formed by axons of sensomotor cortical cells.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 67–74, January–February, 1984.  相似文献   

8.
9.
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ~10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.  相似文献   

10.
Immunofluorescence study of LRF neurons in man   总被引:1,自引:0,他引:1  
Summary Human LRF neurons were characterized by immunofluorescence, using rabbit immunesera against unconjugated synthetic LRF, previously adsorbed on polyvinylpyrrolidone.These neurons, which vary in number from one specimen to another, are mainly concentrated in the mediobasal hypothalamus (infundibular and premammillary nuclei in particular) and in the lamina terminalis and the neighbouring preoptic area. They give rise respectively to a hypothalamoinfundibular LRF tract (ending around the capillaries of the primary portal plexus of the infundibulum) and to a preoptico-terminal tract (ending mainly around the capillaries of the primary and secondary plexuses of the vascular organ of the lamina terminalis and, in addition, between the ependymal cells lining its ventricular surface). It is suggested that these two tracts could be implicated in the tonic and cyclic control of gonadotropic secretion.Some reactive neurons are also present in the septal and pericommissural regions and in the retromammillary area and rostral mesencephalon. These neurons give rise to various extrahypophyseal LRF tracts, probably ending in the telencephalon and the brainstem. It is suggested that LRF, in addition to its major prehypophysiotropic action, is able to modulate the activity of certain telencephalic or mesencephalic structures.I should like to thank Dr. E. Farkas (Head of U. 154 INSERM and Laboratory of Neuropathology, Saint Vincent de Paul Hospital, Paris), Prof. Müller (Head of the Institute of Forensic Medicine, Lille) and collaborators (Ag. Prof. Lenoir, Drs. Debarge and Willot) and Prof. Delecour (Head of Salengro Maternity, Lille) for kindly providing human hypothalami  相似文献   

11.
Study of opioid peptides (leucine-enkephalin and methionine-enkephalin) action on plastic properties of the system of monosynaptically connected neurones LPa7--LPa3, PPa3 and LPa8--LPa3, PPa3 was conducted in the snail brain. It has been shown that all three links in the system studied (presynaptic neurone, postsynaptic neurone and synapse) manifest one and the same type of plasticity--habituation to rhythmic stimulation. Enkephalins have a modulating action on plastic properties of the presynaptic neurone and synapse: they retard the habituation of the presynaptic neurone to intracellular stimulation and retard the development of habituation at synaptic level. However, changes in the character of postsynaptic response in the presence of enkephalins are not a direct consequence of their influence on plastic properties of the presynaptic neurone. Besides, enkephalines reduce the effectiveness of synaptic transmission in the given system: they reduce EPSP duration in the postsynaptic neurone.  相似文献   

12.
13.
14.
15.
The biosynthesis and processing of low molecular weight protein (presumed neurosecretory protein) in cells R15, R14 and L11 of Aplysia californica was studied at high resolution by polyacrylamide slab gel electrophoresis in sodium dodecylsulfate. The number of low molecular weight proteins detected in each cell ranges from 3 in R14 and L11 to 5 or 6 in R15. In each of the cells studied, the low molecular weight protein consists of a primary precursor of ca. 12,000 daltons, and its proteolytic processing products. In each cell, the smallest protein, or in the case of R14, one of the two smallest proteins, accumulates to a significant extent, suggesting that it might correspond to a final processed neurohormone. In cell R15, the biosynthesis of the primary precursor and its subsequent processing to smaller peptides is largely unaffected by removal of extracellular calcium, by replacement of calcium with cobalt or by inhibition of spontaneous bursting via stimulation of the brachial nerve.  相似文献   

16.
Postsynaptic Ca2+ changes are involved in control of cellular excitability and induction of synaptic long-term changes. We monitored Ca2+ changes in dendrites and spines during synaptic and direct stimulation using high resolution microfluorometry of fura-2 injected into CA3 pyramidal neurons in guinea pig hippocampal slice. When driven by current injection from an intracellular electrode or with synaptic stimulation, postsynaptic Ca2+ accumulations were highest in the proximal dendrites with a pronounced fall-off towards the soma and some fall-off towards more distal dendrites. Muscarinic activation by low concentrations of carbachol strongly increased intradendritic Ca2+ accumulation during directly-evoked repetitive firing. This enhancement occurred in large part because muscarinic activation suppressed the normal Ca(2+)-dependent activation of K-channels that mediates adaptation of firing. Repetitive firing of cholinergic fibers in the slice reproduced the effects of carbachol. Inhibition of acetylcholine-esterase activity by eserine enhanced the effects of repetitive stimulation of chlolinergic fibers. All effects were reversible and were blocked by the muscarinic antagonist atropine. Ca2+ accumulations in postsynaptic spines might be the basis of specificity of synaptic plasticity. With selective stimulation of few associative/comissural fibers, Ca2+ accumulated in single postsynaptic spines but not in the parent dendrite. With strong stimulation, dendrite levels also increased but spine levels were considerably higher. The NMDA-receptor antagonist AP-5 blocked Ca(2+)-peaks in spines, but left Ca2+ changes in dendrite shafts largely unaffected. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, developed with repeated stimulation. Our results demonstrate a spine entity that can act independent from the dendrite with respect to Ca(2+)-dependent processes. Muscarinic augmentation of dendritic Ca2+ levels might reduce diffusional loss of Ca2+ from hot spines into the parent dendrite, thus supporting cooperativity and associativity of synaptic plasticity.  相似文献   

17.
The regional mouse brain distribution of a new carbon-11 labeled derivative of vesamicol, [11C]-5-(N-methylamino)benzovesamicol [( 11C]MABV) is reported. Radiotracer concentrations in vivo are in the rank order of striatum greater than cortex greater than hippocampus greater than hypothalamus greater than cerebellum, consistent with reported distributions of other presynaptic cholinergic neuronal markers. In time course studies, striatum/cerebellum and cortex/cerebellum ratios for (-)-[11C]MABV continue to increase to values of 13 and 5, respectively, 75 min after i.v. injection of [11C]MABV. The specific binding in striatum and cortex is lowered by pretreatment with (+/-)-vesamicol, and shows stereoselectivity with lower uptake and lower ratios for the (+)-enantiomer. (-)-enantiomer. (-)-[11C]MABV is proposed as a positron-emitting radioligand for the in vivo study of presynaptic cholinergic neurons.  相似文献   

18.
Ye X  Carew TJ 《Neuron》2011,70(3):379-381
Neurexins and neuroligins are cell adhesion molecules that form transsynaptic interactions. In this issue of Neuron, Choi et al. report that neurexin-neuroligin signaling plays a critical role in functional and structural synaptic plasticity underlying memory formation in Aplysia.  相似文献   

19.
M Laudon  N Zisapel 《FEBS letters》1991,288(1-2):105-108
N-Bromoacetyl-2-iodo-5-methoxytryptamine (BIM), a novel derivative of the biologically active melatonin analog, 2-iodomelatonin, was prepared and used to identify melatonin binding proteins in rat brain synaptosomes. Incubation of the synaptosomes with BIM resulted in a time and concentration dependent, irreversible inhibition of 2-[125I]iodomelatonin binding. In parallel, the radioactive form of BIM, N-bromoacetyl-2-[125I]iodo-5-methoxytryptamine ([125I]BIM) became incorporated into the synaptosomes. The incorporation of [125I]BIM was inhibited by BIM, 2-iodomelatonin and melatonin but not by 5-methoxytryptamine or N-acetyl serotonin. [125I]BIM became covalently attached to three polypeptides with apparent molecular weight values of 92, 55 and 45 kDa; the labeling of all three proteins was markedly inhibited by melatonin. These results indicate that the 92, 55 and 45 kDa polypeptides are melatonin binding proteins.  相似文献   

20.
The biosynthesis and processing of low molecular weight protein (presumed neurosecretory protein) in cells R15, R14 and L11 of Aplysia californica was studied at high resolution by polyacrylamide slab gel electrophoresis in sodium dodecylsulfate. The number of low molecular weight proteins detected in each cell ranges from 3 in R14 and L11 to 5 to 6 in R15. In each of the cells studied, the low molecular weight protein consists of a primary precursor of ca. 12,000 daltons, and its proteolytic processing products. In each cell, the smallest protein, or in the case of R14, one of the two smallest proteins, accumulates to a significant extent, suggesting that it might correspond to a final processed neurohormone. In cell R15, the biosynthesis of the primary precursor and its subsequent processing to smaller peptides is largely unaffected by removal of extracellular calcium, by replacement of calcium with cobalt or by inhibition of spontaneous bursting via stimulation of the brachial nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号