首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single‐nucleotide polymorphisms (SNPs) are useful markers for biodiversity assessment, linkage analysis, traceability and paternity testing. To date, there are no available SNPs for goat in the NCBI dbSNP database and only a few are reported in the literature. Within the European Union Econogene project, we characterized 27 SNPs in goats using a targeted‐gene approach. Polymorphisms were identified in a panel of 16 unrelated individuals belonging to eight different goat breeds selected throughout Europe. Genotypes of 30 goats from each of the eight breeds were determined for all the SNPs characterized and diversity measures were estimated. The caprine SNPs described will be a useful complement to the available genome markers.  相似文献   

2.
3.
新一代分子标记--SNPs及其应用   总被引:31,自引:0,他引:31  
邹喻苹  葛颂 《生物多样性》2003,11(5):370-382
单核苷酸多态性(SNPs)是广泛存在于基因组中的一类DNA序列变异,其频率为1%或更高。它是由单个碱基的转换或颠换引起的点突变,稳定而可靠,并通常以二等位基因的形式出现。采用生物芯片和DNA微阵列技术来检测SNP,便于对基因组进行大幅度和高通量分析。因此,作为新一代分子标记,SNP在生物学诸多领域具有广阔应用前景。本文简要叙述SNPs技术的发展历史、研究动态以及相关的理论,介绍了与SNPs相关的基本术语、概念及其特点,列举了发现与检测SNPs主要技术的原理和方法,同时还根据一些具体实例介绍了SNPs在模式动、植物遗传图谱构建、品种鉴定、物种起源与亲缘关系、连锁不平衡与关联分析及其在群体遗传结构及其变化机制研究中的应用。最后展望了SNPs在群体遗传、分子育种和生物进化等研究领域中的应用前景。  相似文献   

4.
We searched for SNPs in 417 regions distributed throughout the genome of three Oryza sativa ssp. japonica cultivars, two indica cultivars, and a wild rice (O. rufipogon). We found 2800 SNPs in approximately 250,000 aligned bases for an average of one SNP every 89 bp, or one SNP every 232 bp between two randomly selected strains. Graphic representation of the frequency of SNPs along each chromosome showed uneven distribution of polymorphism-rich and -poor regions, but little obvious association with the centromere or telomere. The 94 SNPs that we found between the closely related cultivars 'Nipponbare' and 'Koshihikari' can be converted into molecular markers. Our establishment of 213 co-dominant SNP markers distributed throughout the genome illustrates the immense potential of SNPs as molecular markers not only for genome research, but also for molecular breeding of rice.  相似文献   

5.
Next generation sequencing technology allows rapid re-sequencing of individuals, as well as the discovery of single nucleotide polymorphisms (SNPs), for genomic diversity and evolutionary analyses. By sequencing two isolates of the fungal plant pathogen Leptosphaeria maculans, the causal agent of blackleg disease in Brassica crops, we have generated a resource of over 76 million sequence reads aligned to the reference genome. We identified over 21,000 SNPs with an overall SNP frequency of one SNP every 2,065 bp. Sequence validation of a selection of these SNPs in additional isolates collected throughout Australia indicates a high degree of polymorphism in the Australian population. In preliminary phylogenetic analysis, isolates from Western Australia clustered together and those collected from Brassica juncea stubble were identical. These SNPs provide a novel marker resource to study the genetic diversity of this pathogen. We demonstrate that re-sequencing provides a method of validating previously characterised SNPs and analysing differences in important genes, such as the disease related avirulence genes of L. maculans. Understanding the genetic characteristics of this devastating pathogen is vital in developing long-term solutions to managing blackleg disease in Brassica crops.  相似文献   

6.
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.  相似文献   

7.
An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300000 to 1 million ‘tag’ single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300 000 SNPs. In an effort to improve the human SNP map, we identified 140 696 additional SNP candidates using a new bioinformatics pipeline. Over 51 000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans.  相似文献   

8.
9.
We identified ~13 000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat‐masked BAC‐end sequences from the cattle RPCI‐42 BAC library with whole‐genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel containing 186 DNA samples from 18 cattle breeds including 43 trios. Of 1039 SNPs confirmed as polymorphic in the panel, 998 had minor allele frequency ≥0.25 among unrelated individuals of at least one breed. When Btau 4.0 became available, 974 of these validated SNPs were assigned in silico to known cattle chromosomes, while 41 SNPs were mapped to unassigned sequence scaffolds, yielding one SNP every ~3 Mbp on average. Twenty‐four SNPs identified in Btau 1.0 were not mapped to Btau 4.0. Of the 1015 SNPs mapped to Btau 4.0, 959 SNPs had nucleotide bases identical in Btau 4.0 and Btau 1.0 contigs, whereas 56 bases were changed, resulting in the loss of the in silico SNP in Btau 4.0. Because these 1039 SNPs were all directly confirmed by genotyping on the multi‐breed panel, it is likely that the original polymorphisms were correctly identified. The 1039 validated SNPs identified in this study represent a new and useful resource for genome‐wide association studies and applications in animal breeding.  相似文献   

10.
Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.  相似文献   

11.
High‐throughput high‐density genotyping arrays continue to be a fast, accurate, and cost‐effective method for genotyping thousands of polymorphisms in high numbers of individuals. Here, we have developed a new high‐density SNP genotyping array (103,270 SNPs) for honey bees, one of the most ecologically and economically important pollinators worldwide. SNPs were detected by conducting whole‐genome resequencing of 61 honey bee drones (haploid males) from throughout Europe. Selection of SNPs for the chip was done in multiple steps using several criteria. The majority of SNPs were selected based on their location within known candidate regions or genes underlying a range of honey bee traits, including hygienic behavior against pathogens, foraging, and subspecies. Additionally, markers from a GWAS of hygienic behavior against the major honey bee parasite Varroa destructor were brought over. The chip also includes SNPs associated with each of three major breeding objectives—honey yield, gentleness, and Varroa resistance. We validated the chip and make recommendations for its use by determining error rates in repeat genotypings, examining the genotyping performance of different tissues, and by testing how well different sample types represent the queen's genotype. The latter is a key test because it is highly beneficial to be able to determine the queen's genotype by nonlethal means. The array is now publicly available and we suggest it will be a useful tool in genomic selection and honey bee breeding, as well as for GWAS of different traits, and for population genomic, adaptation, and conservation questions.  相似文献   

12.
He C  Chen L  Simmons M  Li P  Kim S  Liu ZJ 《Animal genetics》2003,34(6):445-448
In this study, we identified putative SNP markers within genes by comparative analysis of expressed sequence tags (ESTs). Comparison of 849 ESTs from blue catfish (Ictalurus furcatus) with >11,000 ESTs from channel catfish (I. punctatus) deposited in GenBank resulted in the identification of 1020 putative SNPs within 161 genes, of which 145 were nuclear genes of known function. The observed frequency of SNPs within ESTs of the two closely related catfish species was 1.32 SNP per 100 bp. The majority of identified SNPs differed between the two species and, therefore, these SNPs are useful for mapping genes in channel catfish x blue catfish interspecific resource families. The SNPs that differed within species were also observed; these can be applied to genome scans in channel catfish resource families.  相似文献   

13.
The deluge of data from the human genome project (HGP) presents new opportunities for molecular anthropologists to study human variation through the promise of vast numbers of new polymorphisms (e.g., single nucleotide polymorphisms or SNPs). Collecting the resulting data into a single, easily accessible resource will be important to facilitate this research. We created a prototype Web-accessible database named ALFRED (ALelle FREquency Database, http://alfred.med.yale.edu/alfred/) to store and make publicly available allele frequency data on diverse polymorphic sites for many populations. In constructing this database, we considered many different concerns relating to the types of information needed for anthropology, population genetics, molecular genetics, and statistics, as well as issues of data integrity and ease of access to data. We also developed links to other Web-based databases as well as procedures for others to make links to the data in ALFRED. Here we present an overview of the issues considered and provisional solutions, as well as an example of data already available. It is our hope that this database will be useful for research and teaching in a wide range of fields, and that colleagues from various fields will contribute to making ALFRED an important resource for many studies as yet unforeseen.  相似文献   

14.

Background

Cynomolgus macaques (Macaca fascicularis) are a valuable resource for linkage studies of genetic disorders, but their microsatellite markers are not sufficient. In genetic studies, a prerequisite for mapping genes is development of a genome-wide set of microsatellite markers in target organisms. A whole genome sequence and its annotation also facilitate identification of markers for causative mutations. The aim of this study is to establish hundreds of microsatellite markers and to develop an integrative cynomolgus macaque genome database with a variety of datasets including marker and gene information that will be useful for further genetic analyses in this species.

Results

We investigated the level of polymorphisms in cynomolgus monkeys for 671 microsatellite markers that are covered by our established Bacterial Artificial Chromosome (BAC) clones. Four hundred and ninety-nine (74.4%) of the markers were found to be polymorphic using standard PCR analysis. The average number of alleles and average expected heterozygosity at these polymorphic loci in ten cynomolgus macaques were 8.20 and 0.75, respectively.

Conclusion

BAC clones and novel microsatellite markers were assigned to the rhesus genome sequence and linked with our cynomolgus macaque cDNA database (QFbase). Our novel microsatellite marker set and genomic database will be valuable integrative resources in analyzing genetic disorders in cynomolgus macaques.  相似文献   

15.
Lin W  Yang HH  Lee MP 《Genomics》2005,86(5):518-527
Differential expression between the two alleles of an individual and between people with different genotypes has been commonly observed. Quantitative differences in gene expression between people may provide the genetic basis for the phenotypic difference between individuals and may be the primary cause of complex diseases. In this paper, we developed a computational method to identify genes that displayed allelic variation in gene expression in human EST libraries. To model allele-specific gene expression, we first identified EST libraries in which both A and B alleles were expressed and then identified allelic variation in gene expression based on the EST counts for each allele using a binomial test. Among 1107 SNPs that had a sufficient number of ESTs for the analysis, 524 (47%) displayed allelic variation in at least one cDNA library. We verified experimentally the allelic variation in gene expression for 6 of these SNPs. The frequency of allelic variation observed in EST libraries was similar to the previous studies using the SNP chip and primer extension method. We found that genes that displayed allelic variation were distributed throughout the human genome and were enriched in certain chromosome regions. The SNPs and genes identified in this study will provide a rich source for evaluating the effects of those SNPs and associated haplotypes in human health and diseases.  相似文献   

16.
ABSTRACT: BACKGROUND: The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome. RESULTS: We identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks. CONCLUSIONS: This list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals.  相似文献   

17.
The increase in availability of resequencing data is greatly accelerating SNP discovery and has facilitated the development of SNP genotyping assays. This, in turn, is increasing interest in annotation of individual SNPs. Currently, these data are only available through curation, or comparison to a reference genome. Many species lack a reference genome, but are still important genetic models or are significant species in agricultural production or natural ecosystems. For these species, it is possible to annotate SNPs through comparison with cDNA, or data from well‐annotated genes in public repositories. We present SNPMeta, a tool which gathers information about SNPs by comparison with sequences present in GenBank databases. SNPMeta is able to annotate SNPs from contextual sequence in SNP assay designs, and SNPs discovered through genotyping by sequencing (GBS) approaches. However, SNPs discovered through GBS occur throughout the genome, rather than only in gene space, and therefore do not annotate at high rates. SNPMeta can therefore be used to annotate SNPs in nonmodel species or species that lack a reference genome. Annotations generated by SNPMeta are highly concordant with annotations that would be obtained from a reference genome.  相似文献   

18.
Single nucleotide polymorphisms (SNPs) and/or insertion/deletions (InDels) are frequent sequence variations in the plant genome, which can be developed as molecular markers for genetic studies on crop improvement. The ongoing Brassica rapa genome sequencing project has generated vast amounts of sequence data useful in genetic research. Here, we report a genome-wide survey of DNA polymorphisms in the B. rapa genome based on the 557 bacterial artificial clone sequences of B. rapa ssp. pekinensis cv. Chiifu. We identified and characterized 21,311 SNPs and 6,753 InDels in the gene space of the B. rapa genome by re-sequencing 1,398 sequence-tagged sites (STSs) in eight genotypes. Comparison of our findings with a B. rapa genetic linkage map confirmed that STS loci were distributed randomly over the B. rapa whole genome. In the 1.4 Mb of aligned sequences, mean nucleotide polymorphism and diversity were θ = 0.00890 and π = 0.00917, respectively. Additionally, the nucleotide diversity in introns was almost three times greater than that in exons, and the frequency of observed InDel was almost 17 times higher in introns than in exons. Information regarding SNPs/InDels obtained here will provide an important resource for genetic studies and breeding programs of B. rapa.  相似文献   

19.
20.
The prospect of using linkage disequilibrium (LD) for fine-scale mapping in humans has attracted considerable attention, and, during the validation of a set of single-nucleotide polymorphisms (SNPs) for linkage analysis, a set of data for 4,833 SNPs in 538 clusters was produced that provides a rich picture of local attributes of LD across the genome. LD estimates may be biased depending on the means by which SNPs are first identified, and a particular problem of ascertainment bias arises when SNPs identified in small heterogeneous panels are subsequently typed in larger population samples. Understanding and correcting ascertainment bias is essential for a useful quantitative assessment of the landscape of LD across the human genome. Heterogeneity in the population recombination rate, rho=4Nr, along the genome reflects how variable the density of markers will have to be for optimal coverage. We find that ascertainment-corrected rho varies along the genome by more than two orders of magnitude, implying great differences in the recombinational history of different portions of our genome. The distribution of rho is unimodal, and we show that this is compatible with a wide range of mixtures of hotspots in a background of variable recombination rate. Although rho is significantly correlated across the three population samples, some regions of the genome exhibit population-specific spikes or troughs in rho that are too large to be explained by sampling. This result is consistent with differences in the genealogical depth of local genomic regions, a finding that has direct bearing on the design and utility of LD mapping and on the National Institutes of Health HapMap project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号