首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In attempting to walk rectilinearly in the absence of visual landmarks, persons will gradually turn in a circle to eventually become lost. The aim of the present study was to provide insights into the possible underlying mechanisms of this behavior. For each subject (N?=?15) six trajectories were monitored during blindfolded walking in a large enclosed area to suppress external cues, and ground irregularities that may elicit unexpected changes in direction. There was a substantial variability from trial to trial for a given subject and between subjects who could either veer very early or relatively late. Of the total number of trials, 50% trajectories terminated on the left side, 39% on the right side and 11% were defined as "straight". For each subject, we established a "turning score" that reflected his/her preferential side of veering. The turning score was found to be unrelated to any evident biomechanical asymmetry or functional dominance (eye, hand…). Posturographic analysis, used to assess if there was a relationship between functional postural asymmetry and veering revealed that the mean position of the center of foot pressure during balance tests was correlated with the turning score. Finally, we established that the mean position of the center of pressure was correlated with perceived verticality assessed by a subjective verticality test. Together, our results suggest that veering is related to a "sense of straight ahead" that could be shaped by vestibular inputs.  相似文献   

2.
Summary Specimens of the crayfishProcambarus clarkii turn to face in the direction of a brief tactile stimulus delivered to a walking leg. The control system that guides this directed behavior was investigated under closed-loop and open-loop conditions. The accuracy of turns exhibited in these experiments was compared to baseline accuracy established by animals restrained from forward and backward walking but allowed to rotate in the yaw plane. Procambarus clarkii individuals deprived of visual feedback tended to undershoot the target angle. Response accuracy increased when a uniform field of stripes moved across the visual field in accordance with the turning movements of the animal. Response accuracy did not match the accuracy observed under baseline conditions, however, unless the responding animal encountered a novel visual image, such as the silhouette of a crayfish, in the moving visual field.Visual feedback thus influences the accuracy of turning in crayfish in two important ways. Movement of stripes across the visual field of a crayfish feeds back positively and promotes rapid turning during the initial phase of a response. This effect obtains regardless of the direction or rate of movement of the stripes in the visual field. The appearance of a novel image in the visual field feeds back negatively to inhibit at least partially further turning. Feedback from the visual system appears to fine tune basic turning movements initiated by a tactile stimulus and crudely directed according to that input. Turning behavior in the crayfish resembles in this respect compensatory eye movements in the lobster and escape responses in a number of arthropods.Neural mechanisms that may explain the experimental results are discussed with particular emphasis on the possibility of interaction between voluntary turning responses and optomotor reactions.  相似文献   

3.
In twenty two adult cats, distributed in four groups, stainless steel electrodes were implanted in the superior colliculus and the substantia nigra of both sides in order: 1) to find the current intensity threshold values necessary to evoke turning behavior, and record their variations after lesion of the cited structures; 2) to study the effects of lesioning two of these structures, specifically related to the direction of turning behavior, and 3) to assess the time-course of recovery from postural asymmetry after damaging two structures involved in rotation behavior, located either in the same or in the opposite side, as well as the importance of performing these lesions simultaneously or at different periods. Three main results were observed: 1) a large proportion of lesioned cats showed an increase in threshold values necessary to evoke rotation of the implanted structures located either in the same or in the opposite side; 2) the lesions induced in a significant number of cats a transient postural asymmetry. After lesioning the superior colliculus, the direction of turning was towards the damaged hemisphere. Apomorphine injected fourteen days later demonstrated the existence of an occult asymmetry, and the direction of turning was maintained. In the substantia nigra lesioned animals, the direction of turning, was towards the non-lesioned side. Apomorphine reversed the direction of turning; 3) the cats showed a remarkable capacity to recover from the postural asymmetry produced by the lesion. This experimental series further support the hypothesis of a close functional relationship between structures of both cerebral hemispheres related to turning behavior.  相似文献   

4.
Cockroaches escape from predators by turning and then running. This behavior can be elicited when stimuli deflect one of the rostrally located and highly mobile antennae. We analyzed the behavior of cockroaches, under free-ranging conditions with videography or tethered in a motion tracking system, to determine (1) how antennal positional dynamics influence escape turning, and (2) if visual cues have any influence on antennal mediated escape. The spatial orientation of the long antennal flagellum at the time of tactile stimulation affected the direction of resultant escape turns. However, the sign of flagellar displacement caused by touch stimuli, whether it was deflected medially or laterally for example, did not affect the directionality of turns. Responsiveness to touch stimuli, and escape turn performance, were not altered by blocking vision. However, because cockroaches first orient an antenna toward stimuli entering the peripheral visual field, turn direction can be indirectly influenced by visual input. Finally, when vision was blocked, the run phase of escape responses displayed reduced average velocities and distances traveled. Our results suggest that tactile and visual influences are integrated with previously known wind-sensory mechanisms to achieve multisensory control of the full escape response.  相似文献   

5.
Glaucoma is a leading cause of irreversible blindness worldwide and causes progressive visual impairment attributable to the dysfunction and death of retinal ganglion cells (RGCs). Progression of visual field damage is slow and typically painless. Thus, glaucoma is often diagnosed after a substantial percentage of RGCs has been damaged. To date, clinical interventions are mainly restricted to the reduction of intraocular pressure (IOP), one of the major risk factors for this disease. However, the lowering of IOP is often insufficient to halt or reverse the progress of visual loss, underlining the need for the development of alternative treatment strategies. Several lines of evidence suggest that axonal damage of RGCs occurs primary at the optic nerve head, where axons appear to be most vulnerable. Axonal injury leads to the functional loss of RGCs and subsequently induces the death of the neurons. However, the detailed molecular mechanism(s) underlying IOP-induced optic nerve injury remain poorly understood. Moreover, whether glaucoma pathophysiology is primarily axonal, glial, or vascular remains unclear. Therefore, protective strategies to prevent further axonal and subsequent soma degeneration are of great importance to limit the progression of sight loss. In addition, strategies that stimulate injured RGCs to regenerate and reconnect axons with their central targets are necessary for functional restoration. The present review provides an overview of the context of glaucoma pathogenesis and surveys recent findings regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways.  相似文献   

6.
This study confirms for a phylogenetically basal terrestrial vertebrate that dopaminergic modulations interfere with the visually directed appetitive and consummatory feeding behaviors orienting and snapping, respectively. (1) In common toads Bufo bufo, intralymphatic administration of the dopamine D2/D1-receptor agonist apomorphine led to a dose-dependent facilitation of prey-snapping in response to moving objects. The snapping activity reached a maximum 15–35 min after apomorphine injection. (2) To changes in configurational stimulus features, the basic pattern of discrimination was maintained; however, the acuity of discrimination was reduced due to the high snapping response level. (3) The apomorphine-induced facilitation of snapping was accompanied by a suppression of prey-oriented lunging and turning. Toads snapped only if prey occurred frontally in the visual field at a relatively short distance. The snapping behavior was fixed in its form and stereotyped regarding its immediate release. (4) About 90 min after apomorphine administration, prey-oriented turning behavior was restored and displayed a facilitatory rebound. (5) In comparative experiments with the species B. marinus, both prey-oriented turning and snapping responses were suppressed by apomorphine in a dose-dependent manner. (6) After pre-treatment with the dopamine antagonist haloperidol, apomorphine showed no measurable effect on the visual release of prey orienting or snapping. (7) The results contribute to the sensorimotor and the motivation hypothesis of dopamine function proposed for higher vertebrates and stimulate a comparative discussion of anatomic homologies and functional analogies. Accepted: 10 July 1996  相似文献   

7.
The ability of desert locusts,Schistocerca gregaria, to separate pattern flow within the lateral visual fields into its rotatory and translatory components was studied in tethered flight under open-loop conditions. The optomotor turning behavior results from the sum of compensatory steering and upwind/downwind turning induced by the rotatory and translatory component of pattern flow, respectively. Thereby, the analysis of the visual stimulus is supposedly achieved by linear binocular interaction, i.e., by summation and subtraction of the optomotor effectiveness of the pattern flow on either side. Our results indicate that, in addition, locusts take into account the relative contribution of the rotatory and the translatory stimulus component to the sum total of pattern flow. This yields a factor which modifies the gain of the control loop of either of the response components to give a nonlinear response. It results in a weakening of the behavior upon stimuli composed of rotatory and translatory components. We discuss our results as an adaptation by which an animal avoids inappropriate behavior upon ambiguous stimulus situations.  相似文献   

8.
Tang S  Juusola M 《PloS one》2010,5(12):e14455
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.  相似文献   

9.

Background

Early markers of axonal and clinical outcomes are required for early phase testing of putative neuroprotective therapies for multiple sclerosis (MS).

Objectives

To assess whether early measurement of diffusion tensor imaging (DTI) parameters (axial and radial diffusivity) within the optic nerve during and after acute demyelinating optic neuritis (ON) could predict axonal (retinal nerve fibre layer thinning and multi-focal visual evoked potential amplitude reduction) or clinical (visual acuity and visual field loss) outcomes at 6 or 12 months.

Methods

Thirty-seven patients presenting with acute, unilateral ON were studied at baseline, one, three, six and 12 months using optic nerve DTI, clinical and paraclinical markers of axonal injury and clinical visual dysfunction.

Results

Affected nerve axial diffusivity (AD) was reduced at baseline, 1 and 3 months. Reduced 1-month AD correlated with retinal nerve fibre layer (RNFL) thinning at 6 (R=0.38, p=0.04) and 12 months (R=0.437, p=0.008) and VEP amplitude loss at 6 (R=0.414, p=0.019) and 12 months (R=0.484, p=0.003). AD reduction at three months correlated with high contrast visual acuity at 6 (ρ = -0.519, p = 0.001) and 12 months (ρ = -0.414, p=0.011). The time-course for AD reduction for each patient was modelled using a quadratic regression. AD normalised after a median of 18 weeks and longer normalisation times were associated with more pronounced RNFL thinning and mfVEP amplitude loss at 12 months. Affected nerve radial diffusivity (RD) was unchanged until three months, after which time it remained elevated.

Conclusions

These results demonstrate that AD reduces during acute ON. One month AD reduction correlates with the extent of axonal loss and persistent AD reduction at 3 months predicts poorer visual outcomes. This suggests that acute ON therapies that normalise optic nerve AD by 3 months could also promote axon survival and improve visual outcomes.  相似文献   

10.

Background

The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres.

Methods/Principal Findings

To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate.

Conclusions/Significance

These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization.  相似文献   

11.
All vertebrates depend on neural circuits to produce propulsive movements; however, the contribution of individual neural cell types to control such movements are not well understood. We report that zebrafish space cadet mutant larvae fail to initiate fast turning movements properly, and we show that this motor phenotype correlates with axonal defects in a small population of commissural hindbrain neurons, which we identify as spiral fiber neurons. Moreover, we demonstrate that severing spiral fiber axons produces space cadet-like locomotor defects, thereby providing compelling evidence that the space cadet gene plays an essential role in integrating these neurons into the circuitry that modulates fast turning movements. Finally, we show that axonal defects are restricted to a small set of commissural trajectories, including retinal ganglion cell axons and spiral fiber axons, and that the space cadet gene functions in axonal pathfinding. Together, our results provide a rare example in vertebrates of an individual neuronal cell type that contributes to the expression of a defined motor behavior. Movies available on-line  相似文献   

12.
Somatosensory and visual cortical unit activity was compared in experiments on unrestrained rabbits during receptive field testing and natural "self-stimulation" of the receptive surfaces of surrounding objects in the course of food-getting behavior. Unit activity evoked by receptive field testing may correspond completely, partially, or not at all to its activity during food-getting behavior, i.e., neurons demonstrating connection during testing with particular receptive fields (parts of the body or retina) may preserve it, modify it, or lose it during food-getting behavior. Differences of activity during food-getting behavior were observed even in the case of neurons with identical receptive fields during testing. The possible nonidentity of the overall firing pattern of the neurons during food-getting behavior with the pattern which can be simulated by receptive field testing is discussed.Institute of Psychology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 254–262, March–April, 1984.  相似文献   

13.
Niell CM  Smith SJ 《Neuron》2005,45(6):941-951
The visual pathway from the retina to the optic tectum in fish and frogs has long been studied as a model for neural circuit formation. Although morphological aspects, such as axonal and dendritic arborization, have been well characterized, less is known about how this translates into functional properties of tectal neurons during development. We developed a system to provide controlled visual stimuli to larval zebrafish, while performing two-photon imaging of tectal neurons loaded with a fluorescent calcium indicator, allowing us to determine visual response properties in intact fish. In relatively mature larvae, we describe receptive field sizes, visual topography, and direction and size selectivity. We also characterize the onset and development of visual responses, beginning when retinal axons first arborize in the tectum. Surprisingly, most of these properties are established soon after dendrite growth and synaptogenesis begin and do not require patterned visual experience or a protracted period of refinement.  相似文献   

14.
Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones.  相似文献   

15.
Axonal trees are typically morphologically and physiologically complicated structures. Because of this complexity, axonal trees show a large repertoire of behavior: from transmission lines with delay, to frequency filtering devices in both temporal and spatial domains. Detailed theoretical exploration of the electrical behavior of realistically complex axonal trees is notably lacking, mainly because of the absence of a simple modeling tool. AXONTREE is an attempt to provide such a simulator. It is written in C for the SUN workstation and implements both a detailed compartmental modeling of Hodgkin and Huxley-like kinetics, and a more abstract, event-driven, modeling approach. The computing module of AXONTREE is introduced together with its input/output features. These features allow graphical construction of arbitrary trees directly on the computer screen, and superimposition of the results on the simulated structure. Several numerical improvements that increase the computational efficiency by a factor of 5-10 are presented; most notable is a novel method of dynamic lumping of the modeled tree into simpler representations ("equivalent cables"). AXONTREE's performance is examined using a reconstructed terminal of an axon from a Y cell in cat visual cortex. It is demonstrated that realistically complicated axonal trees can be handled efficiently. The application of AXONTREE for the study of propagation delays along axonal trees is presented in the companion paper (Manor et al., 1991).  相似文献   

16.
Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.  相似文献   

17.
《Zoology (Jena, Germany)》2014,117(6):377-382
Escape responses are often critical for surviving predator–prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach.  相似文献   

18.
1. The movement of normal and sensitized red blood cells in the electric field is a function of the hydrogen ion concentration. The isoelectric point, at which no movement occurs, corresponds with pH 4.6. 2. On the alkaline side of the isoelectric point the charge carried is negative and increases with the alkalinity. On the acid side the charge is positive and increases with the acidity. 3. On the alkaline side at least the charge carried by sensitized cells is smaller and increases less rapidly with the alkalinity than the charge of normal cells. 4. Both normal and sensitized cells combine chemically with inorganic ions, and the isoelectric point is a turning point for this chemical behavior. On the acid side the cells combine with the hydrogen and chlorine ions, and in much larger amount than on the alkaline side; on the alkaline side the cells combine with a cation (Ba), and in larger amount than on the acid side. This behavior corresponds with that found by Loeb for gelatin. 5. The optimum for agglutination of normal cells is at pH 4.75, so that at this point the cells exist most nearly pure, or least combined with anion and cation. 6. The optimum for agglutination of sensitized cells is at pH 5.3. This point is probably connected with the optimum for flocculation of the immune serum body.  相似文献   

19.
Summary

Pheromones can be used as attractants for the opposite sex in many environments; however, little is known about the search strategies employed in responding to pheromones in the marine environment. The spawning behavior of males of the polychaete Nereis succinea is known to be triggered at close range by a high concentration (>~10?7 M) of pheromone, cysteine glutathione disulfide (CSSG), released by females. Since CSSG also causes acceleration of swimming and increased turning, in addition to eliciting ejaculation, we proposed the hypothesis that these behaviors elicited by low concentrations of pheromone can be used by males to find females. The current study develops a computer simulation model of male and female N. succinea behavior for testing whether male responses to low concentrations of CSSG can facilitate finding females. Video recording of female swimming behavior in the field showed spontaneous loops, spirals, and circles that have been incorporated into the model. The scientific workflow paradigm within which the computer model has been developed also incorporates a data provenance system to enable systematic replay and testing of responses to individual parameters. Output of the model shows complex turning behavior leading to successful mating encounters at concentrations as low as 3×10?9 M CSSG. Behavior resembling the output of the model was recorded in field observations. Application of the model in the future will be used to determine what pheromone concentrations produce significant increases in the probability of mating encounters.  相似文献   

20.
A laser micro-beam unit was used to reproducibly and selectively eliminate the large horizontal and vertical motion sensitive neurons (H- and V-cells) of the lobula plate on one side of the brain of house fliesMusca domestica. This was achieved by ablating the precursors of these cells deep in the larval brain without damaging other cells in the brain or other tissues. The individually reared flies were tested for their behaviour. Three tests were performed: (i) visual fixation of a single stripe, (ii) the optomotor turning and thrust response to a stripe moving clockwise and counterclockwise around the fly, (iii) the monocular turning response to a moving grating. The responses to a moving single object were normal on both sides, the control side and the one lacking the H- and V-cells. However, the responses to a moving grating were reduced on the side lacking H- and V-cells for progressive (front to back) and regressive (back to front) motion. From this we conclude that the response to single objects is controlled mainly by cells other than the H- and V-cells. We also suggest two separate pathways for the processing of single object motion and wide field pattern motion respectively (Fig. 8). Furthermore, the H- and V-cells might function as visual stabilizers and background motion processors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号