首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用免疫组织化学方法研究P物质在雌雄黄雀发声控制核团和听觉中枢内的分布,结合计算机图像分析仪检测SP免疫阳性细胞和末梢的灰度值,并作雌雄比较。结果如下:1.在发声学习中枢嗅叶X区有大量的SP阳性神经末梢和一些神经细胞。2.在发声控制核团前脑高级发声中枢(HVc)、古纹状体栎核、发声学习中枢新纹状体巨细胞核和丘脑背内侧核外侧部内有许多的SP免疫阳性细胞。3.在发声控制中枢中脑背内侧核和延髓舌下神经核气管鸣管部、听觉中枢丘脑卵圆核的壳区、中脑背外侧核壳区及中脑丘间核等有密集的SP免疫阳性神经末梢和纤维分布;雄性发声中枢内SP的分布比雌性丰富,两者有显著的差异。结果表明:SP的分布在雌雄发声中枢之间存在显著的性双态;SP广泛分布于黄雀发声控制核团和部分听觉中枢内,提示SP可能在发声控制及听觉中枢内具有重要的生理功能。  相似文献   

2.
用免疫组织化学方法研究P物质在雌雄黄雀发声控制核团和听觉中枢内的分布,结合计算机图像分析仪检测SP免疫阳性细胞和末梢的灰度值,并作雌雄比较。结果如下:1.在发声学习中枢嗅叶X区有大量的SP阳性神经末梢和一些神经细胞。2.在发声控制核团前脑高级发声中枢(HVc)、古纹状体栎核、发声学习中枢新纹状体巨细胞核和丘脑背内侧核外侧部内有许多的SP免疫阳性细胞。3.在发声控制中枢中脑背内侧核和延髓舌下神经核气管呜管部、听觉中枢丘脑卵圆核的壳区、中脑背外侧核壳区及中脑丘间核等有密集的SP免疫阳性神经末梢和纤维分布;雄性发声中枢内SP的分布比雌性丰富,两者有显著的差异。结果表明:SP的分布在雌雄发声中枢之间存在显著的性双态;SP广泛分布于黄雀发声控制核团和部分听觉中枢内,提示SP可能在发声控制及听觉中枢内具有重要的生理功能。  相似文献   

3.
小脑在蝙蝠回声定位中的作用   总被引:1,自引:0,他引:1  
周晓明 《生命科学》1998,10(5):222-223,217
蝙蝠的涉及了与回声定位的各个环节(包括发声、听觉和运动三个系统)密切相关,它在协调三者之间的活动,尤其是在听觉-运动的整合过程中起着重作用。  相似文献   

4.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉Jiu的高级发声中枢(HVc) 接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉Jiu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背我 核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

5.
用生物素示踪法和P物质 (SP)免疫组化技术研究表明 :黄喉的高级发声中枢 (HVc)接受端脑听区 (L)、新纹状体中部界面核、新纹状体巨细胞核 (MAN)、丘脑葡萄形核、桥脑蓝斑核的传入 ,并有神经纤维投射到古纹状体栎核 (RA)和嗅叶X区 (X) ;HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系 ,提示黄喉发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体 ,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声 -听觉中枢 ,可能参与了它们的活动  相似文献   

6.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉wu的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉wu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

7.
听觉皮层信号处理   总被引:1,自引:0,他引:1  
王晓勤 《生命科学》2009,(2):216-221
听觉系统和视觉系统的不同之处在于:听觉系统在外周感受器和听皮层间具有更长的皮层下通路和更多的突触联系。该特殊结构反应了听觉系统从复杂听觉环境中提取与行为相关信号的机制与其他感觉系统不同。听皮层神经信号处理包括两种重要的转换机制,声音信号的非同构转换以及从声音感受到知觉层面的转换。听觉皮层神经编码机制同时也受到听觉反馈和语言或发声过程中发声信号的调控。听觉神经科学家和生物医学工程师所面临的挑战便是如何去理解大脑中这些转换的编码机制。我将会用我实验室最近的一些发现来阐述听觉信号是如何在原听皮层中进行处理的,并讨论其对于言语和音乐在大脑中的处理机制以及设计神经替代装置诸如电子耳蜗的意义。我们使用了结合神经电生理技术和量化工程学的方法来研究这些问题。  相似文献   

8.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉(巫鸟)的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入.听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉(巫鸟)发声学习依赖于听觉反馈.在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末.SP广泛分布于发声-听觉中枢,可能参与了它们的活动.  相似文献   

9.
对近年来听觉反馈在鸣禽鸣唱学习可塑性方面的研究进行综述.鸣禽的鸣曲学习与人类的语言学习都是一种依赖于听觉反馈的模仿学习.在鸣曲学习过程中,幼鸟根据听觉反馈的信息对鸣曲进行比较和修正,使其不断完善;在鸣曲维持过程中,成鸟通过听觉反馈实时监测自己鸣曲的完整性与准确性,使鸣曲保持稳定.鸣曲的输出与听觉反馈信息在鸟脑中得到整合,并指导下一次鸣唱做出适当的调整.近年来,这种感觉与运动信息在鸣禽发声核团中的整合机制逐渐引起了国内外研究者的兴趣.其中,新纹状体巨细胞核外侧部(LMAN)神经元对自鸣曲(BOS)高度选择性的听觉应答在鸣曲去稳定化过程中的作用,以及高级发声中枢(HVC)中镜像神经元的发现,为今后的研究提供了重要的线索.  相似文献   

10.
鸟类脑干听觉诱发电位的观察   总被引:1,自引:0,他引:1  
采用短声刺激鸟类听觉感受器的方法,对15只健康成年虎皮鹦鹉的脑干听觉诱发电位进行了实验观察。结果发现,鸟类头顶均能记录到与听觉有关的脑干听觉诱发电位Ⅰ波、Ⅱ波、Ⅲ波、Ⅳ波和Ⅴ波。为鸟类语言发声研究的听力学评价提供一个简便可行的方法。  相似文献   

11.
采用辣根过氧化物酶顺、逆行标记方法对鸣禽鸟蜡嘴雀控制发声的神经核团、脑干听觉核团及神经通路,从外周至中枢逐级进行了追踪研究。结果表明:1.控制发声的神经核团及通路,前脑古纹状体腹内侧粗核是大脑控制发声的重要核团之一,它发出枕中脑后束经端脑前联合呈双侧支配延脑中间核,中间核又发出舌下神经经气管鸣管分支支配鸣肌,中间核同时也接受中脑背内侧核的支配,2.脑干听觉中枢及通路,中脑背外侧核是脑干较高级听觉中枢、初级中枢耳蜗核由角核和前庭外侧核组成,NA发出以对侧为主的纤维经外侧丘系可直接传入中脑背外侧核形成脑干听觉直接通路。  相似文献   

12.
采用辣根过氧化物酶顺、逆行标记方法对鸣禽鸟蜡嘴雀控制发声的神经核团、脑干听觉核团及神经通路,从外周至中枢逐级进行了追踪研究。结果表明:1.控制发声的神经核团及通路,前脑古纹状体腹内侧粗核是大脑控制发声的重要核团之一,它发出枕中脑后束经端脑前联合呈双侧支配延脑中间核,中间核又发出舌下神经经气管鸣管分支支配鸣肌,中间核同时也接受中脑背内侧核的支配;2.脑干听觉中枢及通路,中脑背外侧核是脑干较高级听觉中  相似文献   

13.
听觉对鸟类的生存至关重要,仅次于视觉。利用听觉,鸟类可感知各种声音信息,进行种间识别、发声学习、回声定位、迁徙定向等活动。鸟类的听觉器官和哺乳类一样,由外耳、中耳和内耳三部分组成。鸟类的外耳无明显的耳壳。除少数鹑鸡类、  相似文献   

14.
用双向神经示踪剂生物素结合的葡聚糖胺和SP-免疫组织化学方法研究白腰文鸟发声学习中枢嗅叶X区的神经投射和P物质在发声中枢及相关核团内的分布。结果表明:X区接受发声与听觉整合中枢上纹状体腹侧尾核(HVC)以及中脑AVT的传入投射,由X区发出的神经纤维投射到丘脑外侧核内侧部(DLM)。在HVC、DLM、新纹状体前部巨细胞核和发声控制中枢古纹状极核内有许多的SP-免疫阳性神经细胞,在X区、中脑背内侧核和延髓舌下神经核等有大量的SP-免疫阳性神经纤维或终末等。提示P物质可能在发声中枢内起重要的生理作用。  相似文献   

15.
锡嘴雀和家鸽中脑发声与听觉核团传入联系的比较研究   总被引:3,自引:0,他引:3  
李东风  姜秋波 《动物学报》1991,37(4):383-388
作者采用HRP神经轴突逆行标记的方法对鸣禽锡嘴雀(Coccothraustes coccothraustes)、非鸣禽家鸽(Columba livia domesticus)丘间核内发声与听觉核团的传入联系进行了比较研究。结果表明:丘间核内侧部的背内侧亚核接受来自前脑发声运动核团的传入;外侧部的背外侧亚核接受来自脑干听觉中继核的传人。鸣禽与非鸣禽的两亚核接受下行纤维投射的部位既有共同之处,亦存在着差异。  相似文献   

16.
与人类语言学习或形成一样,鸣禽鸣唱也是一种发声学习行为,二者具有一定的相似性,例如发声学习过程均需听觉反馈的参与,幼年期具有更强的发声学习能力,可对复杂的声学结构和音节序列进行控制等。尽管鸣禽和人类的发声器官在结构上有很大差异,但二者发声的物理机制仍表现出很强的相似性。虽然相比于其他哺乳动物,鸣禽和人类的亲缘关系很远,但通过对比发声行为产生的基础通路——脑干先天发声控制通路,以及与发声学习相关的更高神经水平的发声运动和学习通路脑区位置、相互联系、功能及基因表达谱,提示鸣禽鸣唱和人类语言的神经控制具有一定的进化相似性。这些共同特征使得鸣禽成为了研究发声学习的理想模型。本文对鸣禽与人类的发声器官及发声行为的神经控制通路进行了比较,并对鸣禽模型在人类失语症治疗研究中潜在的应用前景进行了展望,以期为研究人类语言学习的神经机制及语言障碍的治疗带来理论参考和借鉴。  相似文献   

17.
褐菖鲉的听觉阈值研究   总被引:1,自引:0,他引:1  
利用听觉诱发电位记录技术研究了褐菖鲉(Sebasticus marmoratus)的听觉阈值。通过采用听觉生理系统记录和分析了8尾褐菖鲉对频率范围在100—1000 Hz的7种不同频率的声音刺激的诱发电位反应。结果表明, 褐菖鲉的听觉阈值在整体上随着频率增加而增加, 对100—300 Hz的低频声音信号敏感, 最敏感频率为150 Hz, 对应的听觉阈值为70 dB re 1 μPa。褐菖鲉的听觉敏感区间与其发声频率具有较高的匹配性, 表明其声讯交流的重要性。同时, 人为低频噪声可能对其声讯交流造成影响。  相似文献   

18.
鸟类听觉与发声神经通路研究中的HRP技术   总被引:3,自引:0,他引:3  
HRP技术是一种新型的组织化学技术。它在研究鸟类神经通路方面的应用,在国内报道不多。本文总结性地报道我们近年来应用HRP在鸟类听觉与发声神经通路中的研究结果。研究表明HRP不仅可以逆行、顺行  相似文献   

19.
海洋噪声     
<正>在海洋里生活的鲸类动物拥有极为精密复杂的发声系统和声音处理系统,它们能利用声音来实现个体间通讯、导航、定位、寻找食物以及逃避天敌的目的。严重的噪声污染,会损伤鲸类的听觉系统,甚至导致生命体死亡。科学家发现,大型船只的低频声会覆盖鲸类的通讯发声,进而影响它们的活动如迁移行为。低频噪声会使得北大西洋露脊鲸的糖皮质激素降低,导致生命体的代谢紊乱。军舰使用的中频声呐会引起鲸类听觉器官受损,引发大规模搁浅。海上爆破产生的噪声会导致附近海域的中华白海豚脑部充血等等。  相似文献   

20.
刘少艺  冯理  张萌  李东风 《生命科学研究》2012,16(6):551-556,564
鸣曲和鸣唱行为可以诱导鸣禽前脑不同区域的zenk基因表达.鸣禽听到同类鸣曲时在听觉系统会出现zenk表达,并在致聋后这种诱导消失.而鸣禽鸣唱时,在鸣唱系统同样有zenk基因的表达,且不依赖于听觉反馈,因为致聋鸟只要发声就可以诱导表达.大量的研究表明,zenk基因在听区的诱导表达不仅可对同类鸣曲进行识别,而且在教习曲模板的记忆方面发挥重要作用.鸣唱系统zenk基因诱导表达则主要与鸣曲的产生与维持有关.zenk基因在两个系统中的诱导表达将听觉感知与鸣唱运动紧密联系起来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号