首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Herold  K Kirschner 《Biochemistry》1990,29(7):1907-1913
The unfolding and dissociation of the dimeric enzyme aspartate aminotransferase (D) from Escherichia coli by guanidine hydrochloride have been investigated at equilibrium. The overall process was reversible, as judged from almost complete recovery of enzymic activity after dialysis of 0.7 mg of denatured protein/mL against buffer. Unfolding and dissociation were monitored by circular dichroism and fluorescence spectroscopy and occurred in three separate phases: D in equilibrium 2M in equilibrium 2M* in equilibrium 2U. The first transition at about 0.5 M guanidine hydrochloride coincided with loss of enzyme activity. It was displaced toward higher denaturant concentrations by the presence of either pyridoxal 5'-phosphate or pyridoxamine 5'-phosphate and toward lower denaturant concentrations by decreasing the protein concentration. Therefore, bound coenzyme stabilizes the dimeric state, and the monomer (M) is inactive because the shared active sites are destroyed by dissociation of the dimer. M was converted to M* and then to the fully unfolded monomer (U) in two subsequent transitions. M* was stable between 0.9 and 1.1 M guanidine hydrochloride and had the hydrodynamic radius, circular dichroism, and fluorescence of a monomeric, compact "molten globule" state.  相似文献   

2.
The unfolding induced by guanidine hydrochloride of the small protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus has been investigated by means of circular dichroism and fluorescence measurements. At neutral pH and room temperature the midpoint of the transition occurred at 4M guanidine hydrochloride. Thermodynamic information was obtained by means of both the linear extrapolation model and the denaturant binding model, in the assumption of a two-state N<==>D transition. A comparison with thermodynamic data determined from the thermal unfolding of Sso7d indicated that the denaturant binding model has to be preferred. Finally, it is shown that Sso7d is the most stable against both temperature and guanidine hydrochloride among a set of globular proteins possessing a very similar 3D structure.  相似文献   

3.
The denaturation behavior of bovine lens gamma-crystallin fractions II, III, and IV and their susceptibility to proteolysis in vitro was compared to determine whether differences in their stability could play a role in cataract formation. Tertiary and secondary structure changes induced by increasing concentrations of urea, guanidine hydrochloride, and sodium dodecyl sulfate and by increasingly alkaline pH were followed by near-UV and far-UV circular dichroism, Trp fluorescence emission, and exposure of sulfhydryl groups. Major differences were found in the denaturation and proteolysis behavior of the three gamma-crystallin fractions. In general, the unfolding of gamma-II and gamma-III crystallins is rather gradual, suggesting the presence of intermediate unfolding states; in contrast, the order-disorder transition of gamma-IV crystallin is abrupt. The gamma-IV crystallin fraction is the most stable in urea and guanidine hydrochloride, but is most susceptible to nonspecific proteolysis and alkaline pH denaturation. Differences in denaturation and proteolysis behavior are attributed to the inherent differences in the tertiary structures of these crystallins.  相似文献   

4.
K Hon-nami  T Oshima 《Biochemistry》1979,18(25):5693-5697
The denaturation of Thermus thermophilus cytochrome c-552 by acid, guanidine hydrochloride, and heat was studied by measuring the changes in absorption and circular dichroism. Cytochrome c-552 was remarkably resistant to acid; the pK of the transition from the low- to the high-spin form was roughly 0.3. The effect of guanidine hydrochloride on the heme iron-methionine bond of Thermus and horse cytochromes c was also investigated; a comparison of the free-energy changes for the displacement of the bond indicated that the coordination in cytochrome c-552 is highly stable. The spectra of guanidine hydrochloride unfolded cytochrome c-552 were dependent on the pH; the titration curve showed the presence of a cooperative single transition of pK = 4.7, with a one-proton dissociation, suggesting the ionization of a histidine residue. In the presence of guanidine hydrochloride, the influence of the heat on the ligand bond in cytochrome c-552 was studied. The van't Hoff plots of the reaction were biphasic. The enthalpy changes in the higher temperature range were independent on the guanidine hydrochloride concentration, while those in the lower range were not.  相似文献   

5.
Y Goto  N Ichimura  K Hamaguchi 《Biochemistry》1988,27(5):1670-1677
The equilibria and kinetics of unfolding and refolding by guanidine hydrochloride of the VL and CL fragments of a type kappa immunoglobulin light chain were studied in the presence of ammonium sulfate using circular dichroism and tryptophyl fluorescence at pH 7.5 and 25 degrees C. The unfolding equilibria of the VL and CL fragments were described in terms of the two-state transition. The midpoints of unfolding in the absence of ammonium sulfate were at 0.9 and 1.2 M guanidine hydrochloride for the CL and VL fragments respectively. The transition curves were shifted to higher concentrations of guanidine hydrochloride by 1.4 and 1.6 M for the CL and VL fragments, respectively, per mole of ammonium sulfate. Unfolding reactions of the VL and CL fragments in 3 M guanidine hydrochloride followed first-order kinetics, and the rate constants for the two proteins were both greatly decreased by the presence of ammonium sulfate. The refolding reaction of the CL fragment in 0.3 M guanidine hydrochloride consisted of two phases, and the rate constants were increased a little by the presence of ammonium sulfate. The refolding reaction of the VL fragment in 0.3 M guanidine hydrochloride followed first-order kinetics, and the rate was not affected by the presence of ammonium sulfate. These results showed that ammonium sulfate stabilizes the CL and VL fragments mainly by decreasing the unfolding rate.  相似文献   

6.
The unfolding of holo and apo forms of human Cu/Zn superoxide dismutase by guanidine hydrochloride has been investigated by steady-state and dynamic fluorescence. In agreement with previous observations, a stabilizing effect of the metal ions on the protein tertiary structure was apparent from comparison of apo- and holoproteins, which both showed a sharp sigmoidal transition though at different denaturant concentrations. The transition was also followed by circular dichroism to check the extent of secondary structure present at each denaturant concentration. The results are incompatible with a simple two-state mechanism for denaturation. The occurrence of a more complicated process is supported by the emission decay properties of the single tryptophanyl residue at different denaturant concentrations. A complex decay function, namely, two discrete exponentials or a continuous distribution of lifetimes, was always required to fit the data. In particular, the width of the lifetime distribution, which is maximum at the transition midpoint, reflects heterogeneity of the tryptophan microenvironment and thus the presence of different species along the denaturation pathway. In the unfolded state, the width of the lifetime distribution is broader than in the folded state probably because the tryptophan residue is affected by a larger number of local conformations. The dissociation of the dimer was also studied by varying the protein concentration at different denaturant concentrations. This process affects primarly the surface of the protein rather than its secondary structure as shown by a comparison between the tryptophan emission decay and circular dichroism data under the same conditions. Another consequence of dissociation is a greater instability in the structure of the monomers, which are more easily unfolded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Baez M  Cabrera R  Guixé V  Babul J 《Biochemistry》2007,46(20):6141-6148
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.  相似文献   

8.
Bovine muscle carbonic anhydrase (isoenzyme III; BCAIII) exhibited a three-state unfolding process at equilibrium upon denaturation in guanidine hydrochloride (GuHCl). The stable folding intermediate appeared to be of molten globule type. The stability towards GuHCl in terms of mid-point concentrations of denaturation were very similar for BCAIII and human CAII (HCAII). It was further demonstrated that the aromatic amino acid residues contributed significantly to the circular dichroism (CD) spectrum in the far-UV wavelength region during the native-->molten globule state transition. Thus, the ellipiticity change at 218 nm was shown to monitor the loss of tertiary interactions of aromatic side chains at the first unfolding transition as well as the rupture of secondary structure at the second unfolding transition. Similar aromatic contributions to the far-UV CD spectrum, but with varying magnitudes, were also noted for BCAII and HCAII, further emphasizing that interference of aromatic residues should not be neglected at wavelengths that normally are assigned to secondary structural changes.  相似文献   

9.
The unfolding of human plasma alpha 1-acid glycoprotein (AGP) induced by heat or guanidine hydrochloride was studied under equilibrium conditions. In thermal unfolding, an intermediate state was detected by the appearance of unusual positive difference absorption bands in the 287-295-nm region, which occurred at lower temperatures than the common denaturation bands at 284 and 291 nm. The formation of this intermediate species apparently involves a local conformational change that perturbs the environment of tryptophyl residues, without affecting the secondary structure of the protein as judged from circular dichroism spectra. On the other hand, denaturation of the glycoprotein induced by guanidine hydrochloride seemed to follow a two-state model with no evidence of any intermediate species; however, the analysis of the transition curve indicated that the change in the accessibility to solvent of amino acid residues of AGP upon unfolding is significantly lower than those observed for other proteins. According to these results, it is proposed that part of the polypeptide chain in native AGP, namely, that from residue 122 to the C-terminus, may be "loosely" folded.  相似文献   

10.
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGu H 2 0) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.  相似文献   

11.
The guanidine hydrochloride-induced subunit dissociation and unfolding of thermostable alanine racemase from Bacillus stearothermophilus have been studied by circular dichroism, fluorescence and absorption spectroscopies, and gel filtration. The overall process was found to be reversible: more than 75% of the original activity was recovered upon reduction of the denaturant concentration. In the range of 0.6 to 1.5 M guanidine hydrochloride, the dimeric enzyme was dissociated into a monomeric form, which was catalytically inactive. The monomeric enzyme appeared to bind the cofactor pyridoxal phosphate by a non-covalent linkage, although the native dimeric enzyme binds the cofactor through an aldimine Schiff base linkage. The monomer was mostly unfolded, with the transition occurring in the range of 1.8 to 2.2 M guanidine hydrochloride.  相似文献   

12.
Ca2+-induced alteration in the unfolding behavior of alpha-lactalbumin   总被引:5,自引:0,他引:5  
Comparative studies of the unfolding equilibria of two homologous proteins, bovine alpha-lactalbumin and hen lysozyme, induced by treatment with guanidine hydrochloride have been made by analysis of the peptide and the aromatic circular dichroism spectra. The effect of the specific binding of Ca2+ ion by the former protein was taken into account in interpreting the unfolding equilibria of the protein. Proton nuclear magnetic resonance spectra of alpha-lactalbumin were also measured for the purpose of characterizing an intermediate structural state of the protein. In previous studies, alpha-lactalbumin was shown to be an exceptional protein whose equilibrium unfolding does not obey the two-state model of unfolding, although lysozyme is known to follow the two-state unfolding mechanism. The present results show that the apparent unfolding behavior of alpha-lactalbumin depends on Ca2+ concentration. At a low concentration of Ca2+, alpha-lactalbumin unfolds with a stable intermediate that has unfolded tertiary structure, as evidenced by the featureless nuclear magnetic resonance and aromatic circular dichroism spectra, but has folded secondary structure as evidenced by the peptide circular dichroism spectra. However, in the presence of a sufficiently high concentration of Ca2+, the unfolding transition of alpha-lactalbumin resembles that of lysozyme. The transition occurs between the two states, the native and the fully unfolded states, and the cooperativity of the unfolding is essentially the same as that of lysozyme. Such a change in the apparent unfolding behavior evidently results from an increase in the stability of the native state relative to that of the intermediate induced by the specific Ca2+ binding to native alpha-lactalbumin. The results are useful for understanding the relationship between the protein stability and the apparent unfolding behavior.  相似文献   

13.
14.
The equilibrium unfolding of dimeric yeast glutathione reductase (GR) by guanidine hydrochloride (GdnHCl) was investigated. Unfolding was monitored by a variety of techniques, including intrinsic fluorescence emission, anisotropy and iodide quenching measurements, far-ultraviolet circular dichroism and thiol reactivity measurements. At 1 M GdnHCl, one thiol group of GR became accessible to modification with 5,5′-dithiobis-(2-nitrobenzoic) acid (DTNB), whereas no changes could be detected in the spectroscopic properties (fluorescence, circular dichroism) of the protein. Between 2 and 3 M GdnHCl, two partially folded intermediate states possessing flexible tertiary structures (revealed by fluorescence data) but compact secondary structures (as indicated by circular dichroism measurements) were identified. The quaternary structure of GR in the presence of GdnHCl was also investigated by size-exclusion liquid chromatography. These results indicated the presence of an expanded predissociated dimer at 2.5 M GdnHCl and partially folded monomers at 3 M GdnHCl. Taken together, these results suggest the existence of two molten-globule-like intermediate species (one dimeric and one monomeric) in the unfolding of GR. The results are discussed in terms of the mechanism of GR folding and dimerization.  相似文献   

15.
A L Fink  B Painter 《Biochemistry》1987,26(6):1665-1671
The effect of methanol on the thermal denaturation of ribonuclease A has been investigated over the -40 to 70 degrees C range. The transition was fully reversible to at least 60% (v/v) methanol at an apparent pH of cryosolvent (pH) of 3.0 and was examined at methanol concentrations as high as 80%. The unfolding transition, as monitored by absorbance change at 286 nm, became progressively broader and occurred at increasingly lower temperatures as the alcohol concentration increased. In 50% methanol, increasing the pH from 2 to 6 shifted the transition to higher temperature. A substantial decrease in cooperativity was noted at the more acidic conditions. On the other hand, increasing concentrations of guanidine hydrochloride in 50% methanol caused the transition to shift to lower temperatures with little effect on the cooperativity. The observed effects on the cooperativity of the unfolding transition suggest that methanol and lower temperatures may increase the concentration of partially folded intermediate states in the unfolding of ribonuclease. Comparison of the transition in 50% methanol as determined by absorbance or fluorescence, which monitor the degree of exposure of buried tyrosines and hence the tertiary structure, to that determined by far-UV circular dichroism, which monitors secondary structure, indicated that the major unfolding transition occurred at a higher temperature in the latter case. Thus, the tertiary structure is lost at a lower temperature than the secondary structure. This observation is consistent with a model of protein folding in which initially formed regions of secondary structure pack together, predominantly by hydrophobic interactions, to give the tertiary structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The folding of a model native-like dimeric four-helix bundle protein, (alpha(2))(2), was investigated using guanidine hydrochloride, hydrostatic pressure, and low temperature. Unfolding by guanidine hydrochloride followed by circular dichroism and intrinsic fluorescence spectroscopy revealed a highly cooperative transition between the native-like and unfolded states, with free energy of unfolding determined from CD data, DeltaG(unf) = 14.3 +/- 0.8 kcal/mol. However, CD and intrinsic fluorescence data were not superimposable, indicating the presence of an intermediate state during the folding transition. To stabilize the folding intermediate, we used hydrostatic pressure and low temperature. In both cases, dissociation of the dimeric native-like (alpha(2))(2) into folded monomers (alpha(2)) was observed. van't Hoff analysis of the low temperature experiments, assuming a two-state dimer 171-monomer transition, yielded a free energy of dissociation of (alpha(2))(2) of DeltaG(diss) = 11.4 +/- 0.4 kcal/mol, in good agreement with the free energy determined from pressure dissociation experiments (DeltaG(diss) = 10.5 +/- 0.1 kcal/mol). Binding of the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to the pressure- and cold-dissociated states of (alpha(2))(2) indicated the existence of molten-globule monomers. In conclusion, we demonstrate that the folding pathway of (alpha(2))(2) can be described by a three-state transition including a monomeric molten globule-like state.  相似文献   

17.
Here we report the conformational stability of homodimeric desulfoferrodoxin (dfx) from Desulfovibrio desulfuricans (ATCC 27774). The dimer is formed by two dfx monomers linked through beta-strand interactions in two domains; in addition, each monomer contains two different iron centers: one Fe-(S-Cys)(4) center and one Fe-[S-Cys+(N-His)(4)] center. The dissociation constant for dfx was determined to be 1 microM (DeltaG = 34 kJ/mol of dimer) from the concentration dependence of aromatic residue emission. Upon addition of the chemical denaturant guanidine hydrochloride (GuHCl) to dfx, a reversible fluorescence change occurred at 2-3 M GuHCl. This transition was dependent upon protein concentration, in accord with a dimer to monomer reaction [DeltaG(H(2)O) = 46 kJ/mol of dimer]. The secondary structure did not disappear, according to far-UV circular dichroism (CD), until 6 M GuHCl was added; this transition was reversible (for incubation times of < 1 h) and independent of dfx concentration [DeltaG(H(2)O) = 50 kJ/mol of monomer]. Thus, dfx equilibrium unfolding is at least three-state, involving a monomeric intermediate with native-like secondary structure. Only after complete polypeptide unfolding (and incubation times of > 1 h) did the iron centers dissociate, as monitored by disappearance of ligand-to-metal charge transfer absorption, fluorescence of an iron indicator, and reactivity of cysteines to Ellman's reagent. Iron dissociation took place over several hours and resulted in an irreversibly denatured dfx. It appears as if the presence of the iron centers, the amino acid composition, and, to a lesser extent, the dimeric structure are factors that aid in facilitating dfx's unusually high thermodynamic stability for a mesophilic protein.  相似文献   

18.
Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.  相似文献   

19.
Uridine diphosphoglucose dehydrogenase (EC 1.1.1.22: UDPglucose dehydrogenase) at pH 5.5-7.8 is a stable homohexamer of 305 +/- 7 kDa that does not undergo concentration-dependent dissociation at enzyme concentrations greater than 5 micrograms/mL. Chemical cross-linking of the native enzyme at varying glutaraldehyde concentrations yields dimers, tetramers, and hexamers; at greater than 2% (w/v) glutaraldehyde, plateau values of 21% monomers, 16% dimers, 5% tetramers, and 58% hexamers are obtained. Dissociation at acid pH (pH 2.3) or in 4-6 M guanidine hydrochloride leads to inactive monomers (Mr 52,000). Denaturation at increasing guanidine hydrochloride concentration reveals separable unfolding steps suggesting the typical domain structure of dehydrogenases holds for the present enzyme. At greater than 4 M guanidine hydrochloride complete randomization of the polypeptide chains is observed after 10-min denaturation. Reconstitution of the native hexamer after dissociation/denaturation has been monitored by reactivation and glutaraldehyde fixation. The kinetics may be described in terms of a sequential uni-bimolecular model, governed by rate-determining folding and association steps at the monomer level. Trimeric intermediates do not appear in significant amounts. Reactivation is found to parallel hexamer formation. Structural changes during reconstitution (monitored by circular dichroism) are characterized by complex kinetics, indicating the rapid formation of "structured monomers" (with most of the native secondary structure) followed by slow "reshuffling" prior to subunit association. The final product of reconstitution is indistinguishable from the initial native enzyme.  相似文献   

20.
Ke H  Zhang S  Li J  Howlett GJ  Wang CC 《Biochemistry》2006,45(50):15100-15110
The homodimeric protein DsbC is a disulfide isomerase and a chaperone located in the periplasm of Escherichia coli. We have studied the guanidine hydrochloride (GdnHCl)-induced unfolding and refolding of DsbC using mutagenesis, intrinsic fluorescence, circular dichroism spectra, size-exclusion chromatography, and sedimentation velocity analysis. The equilibrium refolding and unfolding of DsbC was thermodynamically reversible. The equilibrium folding profile measured by fluorescence excited at 280 nm exhibited a three-state transition profile with a stable folding intermediate formed at 0-2.0 M GdnHCl followed by a second transition at higher GdnHCl concentrations. Sedimentation velocity data revealed dissociation of the dimer to the monomer over the concentration range of the first transition (0-2.0 M). In contrast, fluorescence emission data for DsbC excited at 295 nm showed a single two-state transition. Fluorescence emission data for the equilibrium unfolding of the monomeric G49R mutant, excited at either 295 or 280 nm, indicated a single two-state transition. Data obtained for the dimeric Y52W mutant indicated a strong protein concentration dependence of the first transition but no dependence of the second transition in equilibrium unfolding. This suggests that the fluorescence of Y52W sensitively reports conformational changes caused by dissociation of the dimer. Thus, the folding of DsbC follows a three-state transition model with a monomeric folding intermediate formed in 0-2.0 M GdnHCl. The folding of DsbC in the presence of DTT indicates an important role for the non-active site disulfide bond in stabilizing the conformation of the molecule. Dimerization ensures the performance of chaperone and isomerase functions of DsbC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号