首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Reisler  J Liu  P Cheung 《Biochemistry》1983,22(21):4954-4960
The effect of Mg2+ on the disposition of myosin cross-bridges was studied on myofibrils and synthetic myosin and rod filaments by employing chymotryptic digestion and chemical cross-linking methods. In the presence of low Mg2+ concentrations (0.1 mM), the proteolytic susceptibility at the heavy meromyosin/light meromyosin (HMM/LMM) junction in these three systems sharply increases over the pH range from 7.0 to 8.2. Such a change has been previously associated with the release of myosin cross-bridges from the filament surface [Ueno, H., & Harrington, W.F. (1981) J. Mol. Biol. 149, 619-640]. Millimolar concentrations of Mg2+ block or reverse this charge-dependent transition. Rod filaments show the same behavior as myosin filaments, indicating that the low-affinity binding sites for Mg2+ are located on the rod portion of myosin. The interpretation of these results in terms of Mg2+-mediated binding of cross-bridges to the filament backbone is supported by cross-linking experiments. The normalized rate of S-2 cross-linking in rod filaments at pH 8.0, kS-2/kLMM, increases upon addition of Mg2+ from 0.30 to 0.65 and approaches the cross-linking rate measured at pH 7.0 (0.75), when the cross-bridges are close to the filament surface. In rod filaments prepared from oxidized rod particles, chymotryptic digestion proceeds both at the S-2/LMM junction and at a new cleavage site located in the N-terminal portion of the molecule. Kinetic analysis of digestion rates at these two sites reveals that binding of Mg2+ to oxidized myosin rods has a similar effect at both sites over the pH range from 7.0 to 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
T J Eddinger  R A Murphy 《Biochemistry》1988,27(10):3807-3811
Smooth muscle myosin heavy chains [SM1, approximately 205 kilodaltons (kDa), and SM2, approximately 200 kDa] were separated on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Peptide maps of the two heavy chains showed unique patterns. Limited proteolytic cleavage of purified swine stomach myosin was performed by using a variety of proteases to produce the major myosin fragments which were resolved on SDS gels. A single band was obtained for heavy meromyosin in the soluble fraction following chymotrypsin digestion. However, a variable number of bands were observed for light meromyosin fragments in the insoluble fraction after chymotrypsin digestion. Peptide mapping indicated that the two bands observed after short digestion times with chymotrypsin had relative mobility and solubility properties consistent with approximately 100- and 95-kDa light meromyosin (LMM) fragments. These results indicate that the region of difference between SM1 and SM2 lies in the LMM fragment.  相似文献   

3.
The temperature-dependence of local melting within the subfragment-2 region of rabbit skeletal muscle myosin has been investigated using an enzyme-probe technique. Rate constants of fragmentation of two long subfragment-2 particles (61,000 Mr and 53,000 Mr per polypeptide chain) and a short subfragment-2 particle (34,000 Mr per polypeptide chain) by three different enzymes (alpha-chymotrypsin, trypsin and papain) have been determined over the temperature range 5 to 40 degrees C. We followed the time-course of digestion at specific sites at high (I = 0.50, pH 7.3) and low (physiological, I = 0.15, pH 7.3) ionic strengths by electrophoresis of the digestion products on sodium dodecyl sulfate-containing gels. All rate constants were corrected for the intrinsic temperature-dependence of the enzymes by comparison with model substrates. Normalized rate constant versus temperature profiles for the three enzyme-probes are similar in showing that local melting in long subfragment-2 (61,000 Mr) occurs in two distinct stages as was observed earlier for the intact myosin rod. Over the temperature range 5 to 25 degrees C a restricted region at Mr = 53,000 to 50,000 from the N terminus of the rod (the light meromyosin/heavy meromyosin junction) shows the highest susceptibility to proteolytic cleavage. At temperatures above 25 degrees C local melting was detected by all three enzymes at several specific sites within the hinge domain (Mr = 53,000 to 34,000). Activation energies for cleavage at the susceptible sites were similar for the three enzyme probes. They suggest that this region of the myosin rod has significantly lower thermal stability than the flanking light meromyosin and short subfragment-2 segments. These results, together with other physico-chemical studies, point to the hinge domain of the myosin cross-bridge as an important functional element in the mechanism of force generation in muscle.  相似文献   

4.
N D Vu  P D Wagner 《Biochemistry》1987,26(15):4847-4853
Limited proteolysis was used to identify regions on the heavy chains of calf thymus myosin which may be involved in ATP and actin binding. Assignments of the various proteolytic fragments to different parts of the myosin heavy chain were based on solubility, gel filtration, electron microscopy, and binding of 32P-labeled regulatory light chains. Chymotrypsin rapidly cleaved within the head of thymus myosin to give a 70,000-dalton N-terminal fragment and a 140,000-dalton C-terminal fragment. These two fragments did not dissociate under nondenaturing conditions. Cleavage within the myosin tail to give heavy meromyosin occurred more slowly. Cleavage at the site 70,000 daltons from the N-terminus of the heavy chain caused about a 30-fold decrease in the actin concentration required to achieve half-maximal stimulation of the magnesium-adenosinetriphosphatase (Mg-ATPase) activity of unphosphorylated thymus myosin. The actin-activated ATPase activity of this digested myosin was only slightly affected by light chain phosphorylation. Actin inhibited the cleavage at this site by chymotrypsin. In the presence of ATP, chymotrypsin rapidly cleaved the thymus myosin heavy chain at an additional site about 4000 daltons from the N-terminus. Cleavage at this site caused a 2-fold increase in the ethylenediaminetetraacetic acid-ATPase activity and 3-fold decreases in the Ca2+- and Mg-ATPase activities of thymus myosin. Thus, cleavage at the N-terminus of thymus myosin was affected by ATP, and this cleavage altered ATPase activity. Papain cleaved the thymus myosin heavy chain about 94,000 daltons from the N-terminus to give subfragment 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody.antigen] complexes. Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin-S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S-2:light meromyosin junction. Localization of TGM-2 to the carboxy-terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development.  相似文献   

6.
The divalent metal ion binding sites of skeletal myosin were investigated by electron paramagnetic resonance (EPR) spectroscopy using the paramagnetic (Mn(II) ion as a probe. Myosin possesses two high affinity sites (K less than 1 muM) for Mn(II), which are located on the 5,5'-dithiobis(2-nitrobenzoate) (DTNB) light chains. Mn(II) bound to the isolated DTNB light chain gives rise to an EPR spectrum similar to that of Mn(II) bound to myosin and this indicates that the metal binding site comprises ligands from the DTNB light chain alone. Myosin preparations in which the DTNB light chain content is reduced by treatment with 5,5'-dithiobis(2-nitrobenzoate) show a corresponding reduction in the stoichiometry of Mn(II) binding, but the stoichiometry is recovered on reassociation of the DTNB light chain. Chymotryptic digestion of myosin filaments in the presence of ethylenediaminetetraacetic acid yields subfragment 1, but digestion in the presence of divalent metal ions produces heavy meromyosin. Myosin with a depleted DTNB light chain content gives rise to subfragment 1 on proteolysis, even in the presence of divalent metal ions. It is proposed that saturation of the DTNB light chain site with divalent ions protects this subunit against proteolysis, which, in turn, inhibits the cleavage of the subfragment 1-subfragment 2 link. Either the DTNB light chain is located near the region of the link and sterically blocks chymotryptic attack, or it is bound to the subfragment 1 moiety and affects the conformation of the link region. When the product heavy meromyosin was examined by sodium dodecyl sulfate gel electrophoresis, an apparent anomaly arose in that there was no trace of the 19 000-dalton band corresponding to the DTNB light chain. This was resolved by following the time course of chymotryptic digestion of the myosin heavy chain, the DTNB light chain, and the divalent metal binding site. The 19 000-dalton DTNB light chain is rapidly degraded to a 17 000-dalton fragment which comigrates with the alkali 2 light chain. The divalent metal site remains intact, despite this degradation, and the 17 000 fragment continues to protect the subfragment 1-subfragment 2 link. In the absence of divalent metal ions, the 17 000-dalton fragment is further degraded and attack of the subfragment 1 link ensues. Mn(II) bound to cardiac myosin gives an EPR spectrum basically similar to that of skeletal myosin, suggesting that their 19 000-dalton light chains are analogous with respect to their divalent metal binding sites, despite their chemical differences. The potential of EPR spectroscopy for characterizing the metal binding sites of myosin from different sources and of intact muscle fibers is discussed.  相似文献   

7.
Limited digestion of Acanthamoeba myosin II by trypsin selectively cleaved the 185,000-Da heavy chains into a 73,000-Da peptide containing the catalytic and actin-binding sites and a 112,000-Da peptide containing the regulatory phosphorylatable sites. The light chains were unaffected. The proteolytic products remained associated and formed bipolar filaments that were very similar in appearance to filaments of native myosin by negative staining electron microscopy. Filaments of trypsin-cleaved, dephosphorylated myosin, however, had a smaller sedimentation coefficient than filaments of native dephosphorylated myosin. Trypsin-cleaved dephosphorylated myosin retained complete Ca2+-ATPase activity but had no actin-activated ATPase activity under conditions that are optimal for native, dephosphorylated myosin (pH 7.0, 4 mM MgCl2, 30 degrees C or pH 6.4, 1 mM MgCl2, 30 degrees C). Trypsin-cleaved dephosphorylated myosin had higher actin-activated ATPase activity at pH 6.0 and 1 mM MgCl2 than undigested dephosphorylated myosin which is appreciably inhibited under these conditions. Trypsin-cleaved, dephosphorylated myosin inhibited the actin-activated ATPase activity of native, dephosphorylated myosin when both were present in the same co-polymers, when enzymatic activity was assayed at pH 7.0, 4 mM MgCl2, and 30 degrees C, but this inhibition was overcome by raising the MgCl2 to 6 mM. These results provide additional evidence that regulation of acanthamoeba myosin II occurs at the filament level and that, under most conditions of assay, the heavy chains must be intact and the regulatory serines unphosphorylated for actin-activated ATPase activity to be maximally expressed.  相似文献   

8.
Myosin light-chain phosphatase.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain.  相似文献   

9.
The relationship between crossbridge release and alpha-helix-coil transition in myosin has been investigated by employing synthetic myosin and rod minifilaments prepared in 10 mM-citrate/Tris buffer at pH 7.0 and 8.0. Initial sedimentation velocity and turbidity measurements have established that the minifilament structures obtained at pH 7.0 and 8.0 are relatively similar in size and homogeneity, and can be used in comparative circular dichroism studies. Chemical crosslinkings and proteolytic digestions carried out at pH 7.0 and 8.0 verify that myosin and rod minifilaments undergo the same pH-induced changes as myosin filaments, i.e. a decrease in the rate of subfragment-2 crosslinking to the filament surface, and an increase in proteolytic susceptibility of the light meromyosin-heavy meromyosin hinge at alkaline pH. These results suggest charge-induced release of the S-2 element from the myosin and rod minifilament surface. Circular dichroism measurements reveal a reduced alpha-helical content of myosin (5%) and rod minifilaments (10%) at pH 8.0 compared to the respective pH 7.0 structures. These results establish a direct link between crossbridge release and alpha-helix-coil transition in myosin.  相似文献   

10.
The heavy chains and the 19-kDa and 20-kDa light chains of bovine brain myosin can by phosphorylated. To localise the site of heavy-chain phosphorylation, the myosin was initially subjected to digestion with chymotrypsin and papain under a variety of conditions and the fragments thus produced were identified. Irrespective of the ionic strength, i.e. whether the myosin was monomeric or filamentous, chymotryptic digestion produced two major fragments of 68 kDa and 140 kDa; the 140-kDa fragment was further digested by papain to yield a 120-kDa and a 23-kDa fragment. These fragments were characterised by (a) a gel overlay technique using 125I-labelled light chains, which showed that the 140-kDa and 23-kDa polypeptides contain the light-chain-binding sites; (b) using myosin photoaffinity labelled at the active site with [3H]UTP, which showed that the 68-kDa fragment contained the catalytic site, and (c) electron microscopy, using rotary shadowing and negative-staining techniques, which demonstrated that after chymotryptic digestion the myosin head remains attached to the tail whereas on papain digestion isolated heads and tails were observed. Thus the 120-kDa polypeptide derived from the 140-kDa fragment is the tail of the myosin, and the 68-kDa fragment containing the catalytic site and the 23-kDa fragment, with the light-chain-binding sites, form the head (S1) portion of the myosin. When [32P]-phosphorylated brain myosin was digested with chymotrypsin and papain it was shown that the heavy-chain phosphorylation site is located in a 5-kDa peptide at the C-terminal end of the heavy chain, i.e. the end of the myosin tail. Using hydrodynamic and electron microscopic techniques, no significant effect of either light-chain or heavy-chain phosphorylation on the stability of brain myosin filaments was observed, even in the presence of MgATP. Brain myosin filaments appear to be more stable than those of other non-muscle myosins. Light-chain phosphorylation did, however, have an effect on the conformation of brain myosin, for example in the presence of MgATP non-phosphorylated myosin molecules were induced to fold into a very compact folded state.  相似文献   

11.
Myosin rod was prepared from hen myosin by chymotryptic digestion. The indigested myosin was successfully removed by ultracentrifugation following alcohol treatment. No significant difference in UV absorption and CD spectra was observed between pH 7.0 and pH 10.5 for both myosin rod and myosin. When pH was raised to 11.7, the phenolic groups of the tyrosyl residues were ionized, and the helical configuration of the myosin rod and myosin could not withstand the electrostatic repulsion. When pH was further raised to 13.6, “abnormal” tyrosyl residues were ionized, resulting in decreased helix content. However, the myosin rod was stabler and less flexible against pH change than myosin, because of the lower content of tyrosyl residues in myosin rod.  相似文献   

12.
The heavy chain of myosin from rabbit skeletal muscle can be cleaved at three sites by irradiation with near-ultraviolet light in the presence of 0.1-1.0 mM vanadate. The sigmoidal dependence upon vanadate concentration, with half-maximal rate occurring at about 0.5 mM vanadate and a sigmoidicity of 2.7, is consistent with the chromophore responsible for cleavage being oligomeric vanadate. Cleavage occurs at two sites located within the head region of the molecule, 23 kDa and 75 kDa from the NH2-terminus; these sites are cleaved equally well in heavy meromyosin and subfragment 1. In the presence of 1 mM vanadate, the half-times for cleavage of the 23-kDa and 75-kDa sites are about 15 and 10 min, respectively. The rate of cleavage at both these sites is retarded 2-3-fold by the presence of greater than 10 microM MgATP. The third photocleavage site is located about 5-10 kDa from the COOH terminus of the intact heavy chain, and cleaves equally well in the isolated rod and in light meromyosin. Cleavage at this site occurs with a half-time of 138 min, and its rate is unaffected by the presence of MgATP. The vanadate-mediated cleavage of the heavy chains is accompanied by characteristic changes in the myosin ATPase properties, with the Ca2+, Mg2+ and actin-activated Mg2+ ATPases becoming elevated, whereas the K+/EDTA ATPase becomes inactivated. The sites of photocleavage in the myosin heavy chain might be associated with sites of phosphate binding.  相似文献   

13.
To determine the localization of F-protein binding sites on myosin, the interaction of F-protein with myosin and its proteolytic fragments in 0.1 M KCl, 10 mM K-phosphate pH 6.5 was studied, using sedimentation, electron microscopic and optical diffraction methods. Sedimentation experiments showed that F-protein binds to myosin and myosin rod rather than to light meromyosin or S-1. The F-protein binding to myosin and rod is of a similar character. The calculated values of the constants of F-protein binding to myosin and rod are 2.6 X 10(5) M-1 and 2.1 X 10(5) M-1, respectively. The binding sites are probably located on the subfragment-2 portion of the myosin molecule. The number of F-protein binding sites on myosin calculated per chain weight of 80 000 is 5 +/- 1. The sedimentation results were confirmed by electron microscopic data. F-protein does not bind to light meromyosin paracrystals, but decorates myosin and rod filaments with the interval of 14.3 nm regardless of whether F-protein is added before or after filamentogenesis. A comparison of optical diffraction patterns obtained from myosin and rod filaments with those from decorated ones revealed a marked enhancement of meridional reflection at (14.3 nm)-1 in the latter case.  相似文献   

14.
Heavy meromyosin containing almost intact regulatory light chains (LC2) was obtained from monomeric phosphorylated and dephosphorylated rabbit fast skeletal muscle myosin by brief chymotryptic digestion in the presence of CaCl2. Actin filaments, complexed with heavy meromyosin, display two different forms of arrowhead, depending on the form of LC2.  相似文献   

15.
A phosphoprotein phosphatase that dephosphorylates smooth muscle myosin has been purified to apparent homogeneity from turkey gizzards. Smooth muscle phosphatase (SMP) IV has a molecular weight of 150,000 as determined by gel filtration on a Sephadex G-200 column and is composed of two subunits (Mr = 58,000 and 40,000). Although it is active toward a number of proteins, its activities toward the contractile proteins, intact myosin, heavy meromyosin, and isolated myosin light chains are higher than its activities toward phosphorylase alpha, histone IIA, and phosphorylase kinase. SMP-IV preferentially dephosphorylates the beta-subunit of phosphorylase kinase. The properties of the enzyme have been studied using heavy meromyosin, a soluble chymotryptic fragment of myosin, and isolated myosin light chains as substrates. SMP-IV has high affinity for both substrates and is optimally active at neutral pH. Divalent cations, Ca2+ and Mg2+, activate the dephosphorylation of heavy meromyosin but inhibit the activity toward myosin light chains. Low concentrations of ATP (1-5 mM) activate SMP-IV but concentrations higher than 5 mM are inhibitory. Inhibition of 50% of the activity of the enzyme by NaF and PPi requires concentrations higher than 10 mM. Rabbit skeletal muscle heat stable inhibitor-2 has no effect on the activity of SMP-IV toward heavy meromyosin, myosin light chains, and phosphorylase alpha.  相似文献   

16.
To understand the nature of the ATP-induced structural change in myosin subfragment-1, rabbit and chicken skeletal subfragments-1s were cleaved by various proteolytic enzymes in the absence, and in the presence, of ATP and the exact locations of the cleavage sites that were affected by ATP were determined from the amino end analysis of fragments by the use of a protein sequencer. It was found that subtilisin cleaved a site between Gln27 and Asn28 of rabbit subfragment-1 and between Gln28 and Asn29 of chicken subfragment-1 only in the presence of ATP. Thermolysin cleaved a site between Pro31 and Phe32 of chicken subfragment-1 in the presence of ATP, but the same site of rabbit subfragment-1 was not cleaved. The location of these sites is quite similar to the ATP-induced chymotryptic cleavage site of chicken gizzard heavy meromyosin, between Trp29 and Ser30 as reported by others. It is suggested, therefore, that the structure and the ATP-induced structural change in the regions are similar in these subfragment-1s. ATP also changes the cleavage rate of the 26K-50K junction by many proteases. Exact cleavage sites were determined and the relationship between their location and the suppression or the enhancement by ATP of the cleavage was studied. It was found that the cleavage sites were restricted to a quite narrow region and only the cleavage by thermolysin that attacked the middle of the region was enhanced by ATP. The distribution of the cleavage sites and the effect of ATP suggest that ATP induces drastic structural change at the middle of the 26K-50K junction region. The region attacked easily by many proteases coincided very well with a hydrophilic region indicated by the hydropathy index. The region probably protrudes outside and is, therefore, easily attacked by many proteases.  相似文献   

17.
Functional domains of chicken gizzard myosin light chain kinase   总被引:2,自引:0,他引:2  
The proteolytic susceptibility of chicken gizzard myosin light chain kinase, a calmodulin-dependent enzyme, has been utilized to define the relative location of the catalytic and regulatory domains of the enzyme. Myosin light chain kinase isolated from this source exhibits a Mr of 130,000 and is extremely sensitive to trypsin at 24 degrees C; however, the molecule is divided into susceptible and resistant domains such that proteolysis proceeds rapidly and at multiple sites in the sensitive regions even at 4 degrees C while the rest of the molecule remains relatively resistant to digestion. One of these sensitive areas is the calmodulin-binding domain. On the other hand, Staphylococcus aureus V8 protease digestion generates a calmodulin-binding fragment (Mr = 70,000) that retains Ca2+/calmodulin-dependent enzymatic activity and both of the phosphorylation sites recognized by cAMP-dependent protein kinase. In contrast, treatment with chymotrypsin produces a 95,000 Mr calmodulin-binding fragment that contains only the calmodulin-modulated phosphorylation site. Sequential proteolytic digestion studies demonstrated that the chymotryptic cleavage site responsible for the generation of this 95,000 Mr peptide is within 3,000 Mr of the V8 protease site which produces the 70,000 Mr fragment. Moreover, the non-calmodulin-modulated phosphorylation site must exist in this 3,000 Mr region. A calmodulin-Sepharose affinity adsorption protocol was developed for the digestion and used to isolate both the 70,000 and 95,000 Mr fragments for further study. Taken together, our results are compatible with a model for chicken gizzard myosin light chain kinase in which there is no overlap between the active site, the calmodulin-binding region, and the two sites phosphorylated by cAMP-dependent protein kinase with regard to their relative position in the primary sequence of the molecule.  相似文献   

18.
It was previously shown that tryptic digestion of subfragment 1 (S1) of skeletal muscle myosins at 0 degree C results in cleavage of the heavy chain at a specific site located 5 kDa from the NH2-terminus. This cleavage is enhanced by nucleotides and suppressed by actin and does not occur at 25 degrees C, except in the presence of nucleotide. Here we show a similar temperature sensitivity and protection by actin of an analogous chymotryptic cleavage site in the heavy chain of gizzard S1. The results support the view that the myosin head, in general, can exist in two different conformational states even in the absence of nucleotides and actin, and indicate that the heavy chain region 5 kDa from the NH2-terminus is involved in the communication between the sites of nucleotide and actin binding. We also show here for the first time that the S1-S2 junction in gizzard myosin can be cleaved by chymotrypsin and that this cleavage (observed in papain-produced S1 devoid of the regulatory light chain) is also temperature-dependent but insensitive to nucleotides and actin. It is suggested that the temperature-dependent alteration in the flexibility of the head-rod junction, which is apparent from these and similar observations on skeletal muscle myosin [Miller, L. & Reisler, E. (1985) J. Mol. Biol. 182, 271-279; Redowicz, M.J. & Strzelecka-Go?aszewska, H. (1988) Eur. J. Biochem. 177, 615-624], may contribute to the temperature dependence of some steps in the cross-bridge cycle.  相似文献   

19.
An enzyme-probe method to detect structural changes in the myosin rod   总被引:1,自引:0,他引:1  
The temperature-dependence of local melting within the alpha-helical, coiled-coil structure of rabbit myosin rod has been investigated by following changes in the rate constants of proteolytic digestion. The kinetics of fragmentation of the rod by three different enzymes (alpha-chymotrypsin, trypsin and papain) over the temperature range 5 to 40 degrees C (pH 7, I = 0.5) has been monitored by electrophoresis of the digestion products on sodium dodecyl sulfate/polyacrylamide gels. All rate constants were corrected for the intrinsic temperature-dependence of the enzyme by comparison with model substrates. Results from the three enzyme-probes are similar in showing that local melting within the rod occurs in two distinct stages. At temperatures between 5 and 25 degrees C, melting is confined to a restricted segment of the rod structure near the light meromyosin/heavy meromyosin junction. At temperatures between 25 and 40 degrees C, a wider segment of the rod lysing between the junction and the short subfragment-2 segment (the hinge domain) appears to be melting, judging from the broad spectrum of cleavage sites observed in this region. Results are compared with those from other physicochemical methods that measure the hinging or opening of the coiled-coil structure of the rod.  相似文献   

20.
We have used alpha-chymotrypsin as an enzyme-probe to detect local melting in the subfragment-2 region of the cross-bridges of rigor myofibrils and glycerinated psoas fibers. The kinetics of proteolysis and the sites of cleavage were determined at various temperatures over the range 5 to 40 degrees C by following the decay of the myosin heavy chain and the rates of appearance of light meromyosin fragments, using electrophoresis on sodium dodecyl sulfate-containing polyacrylamide gels. Cleavage occurs primarily at the 72,000 Mr and 64,000 Mr (per polypeptide chain from the C terminus of myosin) sites within the light meromyosin-heavy meromyosin hinge domain of the subfragment-2 region, under all experimental conditions. At pH 8.2 to 8.3 and at low divalent metal ion (0.1 mM), where the actin-bound cross-bridges are thought to be released from the thick filament surface, the intrinsic cleavage rate constant (k) increases markedly as the temperature is raised. This suggests substantial thermal destabilization of the released cross-bridge in the intact contractile apparatus. Addition of divalent metal ion (10 mM) lowers the cleavage rate and shifts the k versus temperature profile to higher temperatures. Normalized rate constants for chymotryptic cleavage within the subfragment-2 hinge region of released cross-bridges (pH 8.2, low divalent metal) of rigor fibers were markedly lower than activated fibers at all temperatures investigated (5 to 40 degrees C). Results show that conformational melting within the subfragment-2 hinge region is amplified on activation and is well above that observed when the actin-attached rigor bridge is passively released from the thick filament surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号