首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germ Cell Nuclear Factor: An Orphan Receptor in Search of a Function   总被引:1,自引:0,他引:1  
Germ Cell Nuclear Factor (GCNF) is an orphan member of the nuclearreceptor gene superfamily. Much has been understood about thefunctioning of GCNF which represents a candidate receptor fora novel hormonal signalling pathway. GCNF is not closely relatedto other members of the nuclear receptor superfamily and formsits own branch within the superfamily tree. It has a uniqueexpression pattern that spans both embryonic and adult stagesof development. In the adult, it is expressed in the germ cells:oocytes and spermatogenic cells as well as specific neuronalcells within the brain. In the embryo, GCNF expression is turnedon after gastrulation in all germ layers the ectoderm, mesodermand endoderm. An antero-posterior gradient of GCNF is establishedin the neuroectoderm of the embryo, suggesting a role in regulationof neuronal and germ cell development. Regulation of physiologicalprocesses by a nuclear receptor is achieved through regulationof gene expression. GCNF is the only nuclear receptor to specifcallybind to DR0 hormone response elements to regulate gene expression.In the absense of a ligand, GCNF represses gene expression.GCNF is capable of regulating the expression of the protaminegenes in a response element-dependent manner. At present theligand for GCNF is unknown, but it is hypothesized that GCNFis a receptor for a novel hormonal signalling pathway that effectsits biological response by regulating the expression of a subsetof genes containing DR0 response elements.  相似文献   

2.
The dynamic embryonic expression of germ cell nuclear factor (GCNF), an orphan nuclear receptor, suggests that it may play an important role during early development. To determine the physiological role of GCNF, we have generated a targeted mutation of the GCNF gene in mice. Germ line mutation of the GCNF gene proves that the orphan nuclear receptor is essential for embryonic survival and normal development. GCNF(-/-) embryos cannot survive beyond 10.5 days postcoitum (dpc), probably due to cardiovascular failure. Prior to death, GCNF(-/-) embryos suffer significant defects in posterior development. Unlike GCNF(+/+) embryos, GCNF(-/-) embryos do not turn and remain in a lordotic position, the majority of the neural tube remains open, and the hindgut fails to close. GCNF(-/-) embryos also suffer serious defects in trunk development, specifically in somitogenesis, which terminates by 8.75 dpc. The maximum number of somites in GCNF(-/-) embryos is 13 instead of 25 as in the GCNF(+/+) embryos. Interestingly, the tailbud of GCNF(-/-) embryos develops ectopically outside the yolk sac. Indeed, alterations in expression of multiple marker genes were identified in the posterior of GCNF(-/-) embryos, including the primitive streak, the node, and the presomitic mesoderm. These results suggest that GCNF is required for maintenance of somitogenesis and posterior development and is essential for embryonic survival. These results suggest that GCNF regulates a novel and critical developmental pathway involved in normal anteroposterior development.  相似文献   

3.
4.
5.
6.
7.
The germ cell nuclear factor (GCNF) is a nuclear orphan receptor and a putative regulator of the pluripotent state of cells. Although it was first described in mouse germ cells, GCNF is also expressed in mouse and Xenopus embryos. By means of 5'RACE we have identified a novel isoform of Xenopus laevis GCNF that is predominantly expressed in germ cells, whereas both the oocyte and embryonic forms are expressed during Xenopus embryogenesis. EST database search revealed that the homologues of both isoforms are also transcribed in Xenopus tropicalis.  相似文献   

8.
9.
10.
11.
The germ cell nuclear factor (GCNF)   总被引:1,自引:0,他引:1  
The germ cell nuclear factor (GCNF), which is also known as RTR (retinoid receptor-related testis-associated receptor) is a member of the nuclear receptor superfamily. As a natural ligand remains to be discovered, GCNF is referred to as an orphan receptor. Owing to GCNF's unique features and its distant relation to any other known nuclear receptor it has been classified as the only member of the subgroup six and designated NR6A1 by the Receptor Nomenclature Committee (Duarte et al., 2002: Nucleic Acids Res 30: 364-368). To date, GCNF has been cloned from distinct vertebrate species, including zebrafish, Xenopus laevis, mouse, rat, and human. Cloning and characterization of the gene, domain organization and DNA binding properties of the protein, as well as the differential expression of mRNA splice variants or the protein during development and in the adult animal have been comprehensively reviewed by others (Greschik and Schüle, 1998: J Mol Med 76:800-810; Cooney et al., 1999: Am Zool 39:796-806). In this minireview I focus on the pleiotropic function of GCNF in embryogenesis and germ cell differentiation, and discuss novel concepts about its putative role in neurogenesis.  相似文献   

12.
13.
The germ cell nuclear factor (GCNF) is essential for normal embryonic development and gametogenesis. To test the prediction that GCNF is additionally required for neuronal differentiation, we used the mouse embryonal carcinoma cell line PCC7-Mz1, which represents an advantageous model to study neuronal cells from the stage of fate choice until the acquirement of functional competence. We generated stable transfectants that express gcnf sense or antisense RNA under the control of a tetracycline-regulated promoter. After retinoic acid-induced withdrawal from the cell cycle, sense clones developed a neuron network with changed properties, and the time course of neuron maturation was shortened. Consistent with these data, differentiation of neuronal precursor cells was impaired in antisense cultures. This involved a delay in 1) the down-regulation of nestin, a marker for undifferentiated neuroepithelial cells and stem cells of the central nervous system, and 2) up-regulation of the somatodendritic protein microtubule-associated protein 2 and the synaptic vesicle protein synaptophysin. Neuronal cells in the antisense cultures acquired functional competence, although with a significant delay. Our data propose that the level of GCNF is critical for differentiation and maturation of neuronal precursor cells.  相似文献   

14.
The mouse germ cell nuclear factor (mGCNF) is an orphan nuclear receptor implicated in diverse biological processes, including gametogenesis, embryonic development and embryonal carcinoma cell differentiation. We have examined the binding and regulation of the human orthologue, hGCNF, expressed in the teratocarcinoma-derived cell line NTera-2/clone D1 (NT2/D1). Binding of GCNF to the direct repeat of the sequence -AGGTCA- (DR-0) is conserved in mammalia. The formation of interspecies dimers of the in vitro synthesized proteins suggests that cellular GCNF binding is mediated by homodimers. Both the mouse and the human protein bind in concert with cellular factors to DNA. Treatment of NT2/D1 cells with all-trans retinoic acid (atRA) is accompanied first by an up-regulation followed later by a down-regulation of hGCNF and its mRNA. Temporary up-regulation in NT2/D1 cells after treatment with atRA suggests that hGCNF is important for human neural determination and differentiation.  相似文献   

15.
To determine the function of germ cell nuclear factor (GCNF) in female reproduction, we generated an oocyte-specific GCNF knockout mouse model (GCNF(fl/fl)Zp3Cre(+)). These mice displayed hypofertility due to prolonged diestrus phase of the estrous cycle and aberrant steroidogenesis. These reproductive defects were secondary to a primary defect in the oocytes, in which expression of the paracrine transforming growth factor-beta signaling molecules, bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9), were up-regulated in GCNF(fl/fl)Zp3Cre(+) females at diestrus. This was a direct effect of GCNF, as molecular studies showed that GCNF bound to DR0 elements within the BMP-15 and GDF-9 gene promoters and repressed their reporter activities. Consistent with these findings, abnormal double-oocyte follicles, indicative of aberrant BMP-15/GDF-9 expression, were observed in GCNF(fl/fl)Zp3Cre(+) females. The Cre/loxP knockout of GCNF in the oocyte has uncovered a new regulatory pathway in ovarian function. Our results show that GCNF directly regulates paracrine communication between the oocyte and somatic cells by regulating the expression of BMP-15 and GDF-9, to affect female fertility.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号