首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified lambda transducing bacteriophages carrying deoxyribonucleic acid repair or recombination genes of Escherichia coli K-12 by their ability to infect and express their bacterial genes in mutant cells in an agar overlay. This technique has been used to recognize transducing phages carrying uvrC+, ssb+, and other genes and to isolate phages carrying mutant alleles unable to complement ssb or uvrC cells. Several uvrC mutations were obtained which were suppressor sensitive.  相似文献   

2.
3.
Strains of Escherichia coli K12 have been prepared that carry the ruv mutation in combination with lon or uvrA mutant alleles. The ruv minus uvrA minus double mutant is more sensitive to ultraviolet light than the urvA minus single mutant, whereas the strain with ruv and ion mutations shows the same sensitivity to ultraviolet light as the ruv minus single mutant.  相似文献   

4.
5.
Biosynthesis of Amino Sugars by Pseudomonas saccharophila   总被引:11,自引:8,他引:3       下载免费PDF全文
In Escherichia coli, the following genes are involved in motility and chemotaxis. The H gene is the structural gene for flagellin. Mutation in the mot gene results in paralysis of the flagella, and mutation in the fla genes leads to an absence of flagella. The cheA, cheB, and cheC genes are required for chemotaxis. The chromosomal location of these genes has now been determined. The majority are clustered in a small region around uvrC, between his and aroD, in the order his-cheC-H-uvrC-mot-cheA-cheB-aroD. The fla genes are located in the same region, and also between trp and gal. The results indicate that many of the genes are homologous to those which have been studied in Salmonella typhimurium.  相似文献   

6.
7.
8.
Organisation and control of the Escherichia coli uvrC gene   总被引:5,自引:0,他引:5  
J W Forster  P Strike 《Gene》1985,35(1-2):71-82
  相似文献   

9.
Distal regulatory functions for the uvrC gene of E. coli.   总被引:2,自引:1,他引:1       下载免费PDF全文
S Sharma  T Stark    R E Moses 《Nucleic acids research》1984,12(13):5341-5354
We find that the uvrC gene is preceded by three promoters (P1, P2 and P3), identified by heparin-resistant RNA polymerase-DNA complex formation, P2 and P3 promoters are located proximal to the 5' end of the uvrC gene, while the P1 promoter is separated from the uvrC structural gene by an interposed DNA region of more than 1 kb. We have reported that P2 and P3 are not sufficient to promote uvrC complementation. However, plasmids containing the direct fusion of the P1 promoter to the uvrC gene complements the uvrC defect. Insertion of IS1 downstream from the P1 promoter leads to efficient synthesis of the uvrC protein as measured in maxicells. Fusion of the lac promoter to the uvrC structural gene can substitute for in vivo regulatory functions. We conclude that uvrC protein synthesis is controlled in a complex manner and that a distal promoter, P1, is required.  相似文献   

10.
11.
The ruv gene of Escherichia coli, which is associated with inducible mechanisms of DNA repair and recombination, has been cloned into the low-copy plasmid vector pHSG415. The recombinant plasmid pPVA101 fully complements the DNA repair-deficient phenotype of ruv mutants. Restriction endonuclease analysis of this plasmid revealed a 10.6-kilobase (kb) HindIII DNA insert which contained a 7.7-kb PstI fragment identified as being from the chromosomal ruv region. Deletion analysis and Tn1000 insertional inactivation of ruv function located the ruv coding region to a 2.2-kb section of the cloned DNA fragment. A comparison of the proteins encoded by ruv wild-type and mutant plasmids identified the gene product as a protein of molecular weight 41,000.  相似文献   

12.
Radiation resistance of Escherichia coil cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recE, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB 1157 and highly radiation-resistant isogenic strain Gam(r)444. An optimal balance ensuring a high gamma resistance of the Gam(r)444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II.  相似文献   

13.
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.  相似文献   

14.
Properties and regulation of the UVRABC endonuclease   总被引:8,自引:0,他引:8  
W D Rupp  A Sancar  G B Sancar 《Biochimie》1982,64(8-9):595-598
This report summarizes the cloning of the uvrA, uvrB and uvrC genes of E. coli, the identification and isolation of the gene products, the regulation of the genes, and reconstitution of active UVRABC endonuclease from the individually isolated components.  相似文献   

15.
【背景】16S rRNA基因序列分析已广泛应用于细菌的分类鉴定,但是存在一定局限性,而使用看家基因作为分子标记在近缘种及亚种间的系统发育分析中具有其独特的优势。【目的】研究16S rRNA、uvr C (核酸外切酶ABC,C亚基)和mur E (UDP-N-乙酰胞壁酰三肽合酶)基因序列对干酪乳杆菌的近缘种及亚种的区分能力。【方法】采用分离自传统发酵乳中的6株干酪乳杆菌为研究对象,选取uvr C和mur E基因片段,通过PCR扩增、测序,结合已公布的干酪乳杆菌的近缘种或亚种的相应序列计算遗传距离、构建系统发育树,并与16S rRNA基因序列分析技术进行比较。【结果】研究发现Lactobacilluscasei及相近种间的uvr C、mur E和联合基因(uvr C-mur E)构建的系统发育树拓扑结构与16S rRNA基因结果基本一致,区别在于相似性的不同,其分别为79.00%-99.16%、89.08%-99.20%、76.56%-99.69%和99.58%-100%。基于16S rRNA基因不能区分干酪乳杆菌的近缘种及亚种,而看家基因uvr C和mur E基因序列能够很好地区分干酪乳杆菌的近缘种及亚种,并且将uvr C和mur E基因串联使用后,试验菌株与参考菌株的分类关系更加清晰。【结论】联合基因(uvr C-mur E)可作为16SrRNA基因的辅助工具用于干酪乳杆菌的近缘种及亚种的快速准确鉴定。  相似文献   

16.
The production of single-strand breaks in the deoxyribonucleic acid of irradiated uvrC mutants of Escherichia coli K-12 was studied both in vivo and in vitro. In vivo, uvrC mutants displayed a slow accumulation of breaks after irradiation, and in this respect appeared different from uvrA mutants, in which very few breaks could be detected. The breakage observed in uvrC mutants differed from that observed in wild-type strains in both the slow rate of break accumulation and the very limited dose response. The behavior of the uvrC lig-7(Ts) double mutant was shown not to be consistent with the suggestion of ligase reversal as the explanation for the lower rate and limited dose response of break formation observed in ultraviolet-irradiated uvrC mutants in vivo. Rather, there appeared to be a real defect in incision. In toluene-treated cells, we studied the effect of the ligase inhibitor nicotinamide mononucleotide on strand incision. Whereas uvrC mutants displayed more strand breakage in the presence of this inhibitor, the same amount of breakage was seen in uvrA mutants, and as such the breakage could be judged as not due to the main excision repair pathway. Experiments using a cell-free system comprising the partially purified uvr+ gene products demonstrated clearly that there is a requirement for the uvrC+ gene product for strand incision. We suggest that in vivo in the absence of the uvrC+ gene product, a partial analog of this protein may allow some abnormal incision.  相似文献   

17.
In this report Su1 (supD), which is known to suppress "amber" mutations by means of a specific transfer ribonucleic acid, has been mapped relative to his and uvrC and has been found to be located at about 37.5 min on the Taylor and Trotter genetic map of the Escherichia coli K-12 chromosome. In addition, Su1(+) has been shown to be dominant over Su1(-), which supports the idea that Su1 is the structural gene for the suppressing transfer ribonucleic acid.  相似文献   

18.
A system of cells made permeable by treatment with high concentrations of surcrose (plasmolysis) has been exploited to study the excision repair of ultraviolet-irradiated deoxyribonucleic acid in Escherichia coli. It is demonstrated that adenosine 5'-triphosphate is required for incision breaks to be made in the bacterial chromosome as well as in covalently closed bacteriophage lambda deoxyribonucleic acid. After plasmolysis, uvrC mutant strains appear as defective in the incision step as the uvrA-mutated strains. This is in contrast to the situation in intact cells where uvrC mutants accumulate single-strand breaks during postirradiation incubation. These observations have led to the proposal of a model for excision repair, in which the ultraviolet-specific endonuclease, coded for by the uvrA and uvrB genes, exists in a complex with the uvrC gene product. The complex is responsible for the incision and possibly also the excision steps of repair. The dark-repair inhibitors acriflavine and caffeine are both shown to interfere with the action of the adenosine 5'-triphosphate-dependent enzyme.  相似文献   

19.
The endogenous tonB gene of Escherichia coli was used as a target for spontaneous deletion mutations which were isolated from ruvAB-, recG-, and ruvC- cells. The rates of tonB mutation were essentially the same in ruv+, ruvAB-, recG-, and ruvC- cells. We analyzed tonB mutants by sequencing. In the ruv+, recG-, and ruvC- strains, the spectra were different from those obtained from the ruvAB- cells, where deletions dominated followed by IS insertions, base substitutions, and frameshifts, in that order. We then analyzed the tonB-trp large deletion, due to simultaneous mutations of the trp operon, and found that the frequency in ruvAB- was higher than those in ruv+, recG-, and ruvC- cells. To characterize deletion formation further, we analyzed all the tonB mutants from one colicin plate. Seven deletions were identified at five sites from the 45 tonB mutants of ruv+ cells and 24 deletions at 11 sites from the 43 tonB mutants of ruvAB- cells. Thus, the ruvAB- strain is a deletion mutator. We discuss the role of RuvAB in avoiding deletions.  相似文献   

20.
V A Lantsov  I M Stepanova 《Genetika》1990,26(12):2127-2134
RecF, recQ, ruv, recJ and recN genes of so called RecF pathway of recombination appear to be not silent on the RecBCD pathway also. These genes are responsible for the frequency of recombination exchanges per unit length of DNA. The list: recF::Kmr greater than recQ::Tn3 greater than ruv54 greater than recJ::Tn9 demonstrated the efficiency of inhibition of recombination exchanges by these mutations. The recN262 mutation gives a feeble contrary effect. It slightly increases the frequency of recombination exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号