首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroporous polymer particles containing surface epoxy groups were synthesized for immobilization of Candida rugosa lipase (CRL). The effect of incorporation of two different sets of monomers [allyl glycidyl ether (AGE) and glycidyl methacrylate (GMA)] and the effect of crosslinking density on immobilization of lipase were studied. AGE-co-EGDM polymers gave higher binding and expression of lipase than GMA-co-EGDM polymers. Optimization of immobilization parameters was done with respect to immobilization time and enzyme loading. Amongst AGE-co-EGDM polymer series, AGE-150 polymer found to give maximum lipase activity yield and therefore evaluated for temperature, pH and storage stability. Under optimum conditions, AGE-150 polymer gave 78.40% of activity yield. Immobilized lipase on AGE-150 showed a broader pH, higher temperature and excellent storage stability.  相似文献   

2.
The objective of this paper was the investigation of a suitable Sepabeads? support and method for immobilization of lipase from Candida rugosa. Three different supports were used, two with amino groups, (Sepabeads? EC-EA and Sepabeads? EC-HA), differing in spacer length (two and six carbons, respectively) and one with epoxy group (Sepabeads? EC-EP). Lipase immobilization was carried out by two conventional methods (via epoxy groups and via glutaraldehyde), and with periodate method for modification of lipase. The results of activity assays showed that lipase retained 94.8% or 87.6% of activity after immobilization via epoxy groups or with periodate method, respectively, while glutaraldehyde method was inferior with only 12.7% of retention. The immobilization of lipase, previously modified by periodate oxidation, via amino groups has proven to be more efficient than direct immobilization of lipase via epoxy groups. In such a way immobilized enzyme exhibited higher activity at high reaction temperatures and higher thermal stability.  相似文献   

3.
The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., gold modified with a methyl-terminated, self-assembled alkylthiol layer. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance (QCM). Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy (AFM). Lipase adsorption from low ionic strength aqueous buffer produced a uniform confluent protein monolayer. Inclusion of 10% (vol) ethanol in the buffer during immobilization resulted in a 33% adsorbed mass increase. Chemically similar cosolvents, all at 10% by volume in buffer, were also individually examined for their influence on CALB adsorption. Glycerol or 1-propanol increased mass adsorption by 10%, while 2-propanol increased mass adsorption by 33%. QCM dissipation values increased threefold with the inclusion of either ethanol or 2-propanol in the medium during lipase adsorption, indicating formation of multilayers of CALB. Partial multilayer formation using 10% ethanol was confirmed by AFM. Inclusion of 10% ethanol in the CALB immobilization buffer decreased the specific activity of the immobilized lipase by 37%. The formation of lipase multilayers in the presence of certain cosolvents thus results in lower specific activity, which might be due to either influences on lipase conformation or substrate active site accessibility.  相似文献   

4.
In this work, a simple, inexpensive, and efficient method of preparing immobilized lipase is presented. The lipase originating from a newly isolated indigenous strain Burkholderia sp. C20 was immobilized onto cellulose nitrate (CN) membrane via filtration. The CN-immobilized lipase was able to retain 60% of its original activity after repeated uses for nine times. The thermal stability of the lipase was also slightly improved after immobilization. The optimal reaction conditions of CN-lipase were pH 9.0 and 55 degrees C, which are similar to those for the suspended lipase. Both suspended and immobilized lipase could hydrolyze the six oil substrates examined, while immobilized lipase displayed less specificity over the oil substrates. Kinetic analysis shows that the dependence of lipolytic activity of both suspended and immobilized lipase on oil substrate concentration can be described by Michaelis-Menten model with good agreement. The estimated kinetic constants for suspended lipase (v(max)=243.9 U/mg, K(m)=0.024 mM) and immobilized lipase (v(max)=32.8 U/mg, K(m)=5.61 mM) were quite different. Employment of immobilization seemed to result in a decrease in v(max) and an increase in K(m), most likely due to the mass transfer resistance arising from formation of micelles during the lipase immobilization process.  相似文献   

5.
采用试剂y-氯丙基三乙氧基硅烷(cvrEs)对介孔硅材料SBA-15进行表面改性,并通过红外图谱(FT-IR)和N2吸附脱附等温图(BET)对其进行表征。结果表明:改性前原材料的比表面积为460.9m2/g,改性后材料比表面积提高到512.0m2/g。利用改性前和改性后的SBA-15对猪胰脂肪酶进行固载实验,并对实验结果进行比较,发现改性后的SBA-15在脂肪酶活性、pH环境适应性、热耐受性和可操作性都优于改性前的SBA-15,在最优条件下的酶活力提高超过60%。  相似文献   

6.
研究了用高碘酸钠氧化帆布纤维,使其纤维衍生化成为醛基,与脂肪酶交联进行固定化的过程。通过醛基被交联程度来评价交联过程的优劣。首先对纤维的氧化过程进行了简单优化,进而通过反复交联法与酶蛋白交联。以大豆油和橄榄油水解作为固定化酶的性能评价指标。实验结果表明,通过采用反复交联的方法,可提高载体表面酶蛋白质量分数30%左右。酶活力平均达到4U/cm^2,其对温度、pH的耐受性相比游离酶均有不同程度提高。同时利用油脂在固定化酶过程对酶进行保护,使其对温度、pH等的耐受性进一步增强。在维持较高水解率条件下,可在温和条件下连续反应7批,反应半衰期达140h以上。  相似文献   

7.
脂肪酶的固定化及其性质研究   总被引:4,自引:0,他引:4  
曹国民  盛梅 《生物技术》1997,7(3):14-17
采用吸附与交联相结合的方法国定化脂肪酶,研究了脂肪酶固定化的工艺条件,并考察了固定化脂肪酶的催化性能和稳定性。试验结果表明,WA20树脂固定化脂肪酶的最适条件是:酶液pH7.0、给酶量300IU/g树脂、固定时间8h,所得固定化脂肪酶的活力约为165IU/g树脂;固定化酶稳定性较高,在冰箱内贮存6个月活力没有下降,操作半衰期约为750h,而未用戌二醛文联的固定化脂肪酶操作半衰期仅约290h;固定化脂肪酶催化橄榄油水解的最适条件是:PH8.0、温度55℃、底物浓度60%(V/V)、搅拌转速500r/m。  相似文献   

8.
Abstract

Pseudomonas cepacia lipase (PCL) was immobilized in alginate microgel beads by electrostatic dispersion. The high electrical potential applied in the immobilization process could significantly decrease the droplet size. The optimum conditions for lipase immobilization were 2% (w/v) alginate, 100 mM CaCl2, 8 mg/mL enzyme, 4 kV electrical potential and 200 μm mean bead size. Under these conditions, 78.2 U/g of immobilized PCL activity was obtained with 39.1% retained activity and 57.2% immobilization efficiency. The immobilized PCL (PCL-CA) was subsequently used in the enantioselective hydrolysis of (R, S)-N-(2-ethyl-6-methylphenyl) alanine methyl ester. Although PCL-CA exhibited slightly lower activity than free PCL, it preserved the high enantioselectivity (E-value >?200), which afforded enantiomerically pure (R)-acid (99% e.e.p). Furthermore, PCL-CA exhibited higher thermal stability, storage and medium stability than that of free PCL. Batch-wise operational stability studies demonstrated that PCL-CA retained its initial activity for at least 10 cycles of hydrolysis.  相似文献   

9.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

10.
月桂酸生物印迹对脂肪酶酯化活力的影响   总被引:1,自引:0,他引:1  
生物印迹是改良酶学特性,扩大脂肪酶工业应用领域的新兴技术。本研究结合溶胶-凝胶脂肪酶固定化工艺,以甲基三甲氧基硅烷(MTMS)和四甲氧基硅烷(TMOS)为前驱体,月桂酸为印迹分子,考察了月桂酸生物印迹对脂肪酶PS酯化活力的影响。脂肪酶酯化活力测定及扫描电镜观察表明生物印迹能显著提高脂肪酶的活性及稳定性。印迹体系经正交试验优化获得的最优条件为:水和硅烷摩尔比(R)为12,聚乙二醇(PEG)加入量为120μl,月桂酸加入量为0.15mmol。在最优反应条件下,印迹酶相对于游离酶比活力提高了44.3倍,相对于未印迹固定化酶提高了2.4倍;印迹酶具有较好的热稳定性,在80℃下处理0.5h后,残余酶活分别为58%,而游离酶未检测到活性。  相似文献   

11.
Pig bone was examined for its suitability as a support material for lipase immobilization. It was observed that pig bone (PB) particles dispersed readily in both polar and nonpolar solvents, and lipase was easily adsorbed. In particular lipase adsorbed on olive oil-soaked pig bone (OPB) particles exhibited a higher hydrolytic activity than that in lipase adsorbed on a selection of other representative supports, regardless of removing the presoaked olive oil from the particles after immobilization of lipase. The optimum pH and temperature for hydrolytic activity of OPB-adsorbed lipase were the same as those for free lipase, although thermal resistance was increased by immobilization. When OPB-adsorbed lipase was used for repeated batch reactions of olive oil hydrolysis, an activity of more than 80% of the initial activity of each run could he retained after 46 h reaction. The results suggest that PB is an excellent support material.  相似文献   

12.
This study was designed to investigate the stability of a lipase fused with a cellulose-binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene inTrichoderma hazianum and a lipase gene inBacillus stearothermophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the reaction-dependent factors (RDF). RIF includes the reaction conditions such as pH and temperature, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and 50°C were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal-line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over 70% of the initial activity.  相似文献   

13.
以介孔分子筛MCM-41材料为载体,采用物理吸附法对中性脂肪酶进行了固定化处理,并研究不同条件对固定化脂肪酶催化活性的影响,从而得到该种材料对脂肪酶的最佳固定化条件。给酶量为45960 U/g,固定化温度为45℃,pH值为7.5,时间为3 h,此时固定化酶的活力约为4666 U/g。固定化酶和游离酶的最适反应温度都为40℃,最适pH值为7.5,比游离酶低。固定化酶温度稳定性和pH稳定性较游离酶有所提高。  相似文献   

14.
Candida rugosa lipase was entrapped in hybrid organic–inorganic sol-gel powder prepared by acid-catalyzed polymerization of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes, and used in catalyzing esterification reactions between ethanol and butyric acid in hexane. Optimum preparation conditions were studied, which are gels made from propyltrimethoxysilane (PTMS)/TMOS molar ratio=4:1, hydrolysis time of silane precursor=30 min, water/silane molar ratio=24, enzyme loading=6.25% (w/w) of gel, and 1 mg PVA/mg lipase. The percentage of protein immobilization was 95% and the resulting lipase specific activity was 59 times higher than that of a non-immobilized lyophilized lipase. To prepare magnetic lipase-immobilized sol-gel powder (MLSP) for easier recovery of the biocatalyst, Fe3O4 nanoparticles were prepared and co-entrapped with lipase during gel formation. This procedure induced surface morphological change of the sol-gel powder and showed adverse effect on enzyme activity. Hence, although only 9% decrease in protein immobilization efficiency was observed, the corresponding reduction in enzyme activity could be up to 45% when sol-gel powder was doped with 25% (v/v) Fe3O4 magnetic nanoparticles solution. Lipase-immobilized sol-gel polymer was also formed within the pores of different porous supports to improve its mechanical stability. Non-woven fabric, with a medium pore size of all the supports tested, was found to be the best support for this purpose. The thermal stability of lipase increased 55-fold upon entrapment in sol-gel materials. The half-lives of all forms of sol-gel-immobilized lipase were 4 months at 40 °C in hexane.  相似文献   

15.
The use of biopolymer compounds as matrices for enzyme immobilization is currently a focus of increasing interest. In the present work we propose the use of Luffa cylindrica vegetable sponges as a support for the lipase extracted from Aspergillus niger. Effectiveness of immobilization was analyzed using Fourier transform infrared spectroscopy, elemental analysis and the Bradford method. An initial enzyme solution concentration of 1.0 mg/mL and an immobilization time of 12 h were selected as the parameters that produce a system retaining the highest hydrolytic activity (84% of free enzyme). The resulting biocatalyst system also exhibited high thermal and chemical stability, reusability and storage stability, which makes it a candidate for use in a wide range of applications. Kinetic parameters for the native and immobilized lipase were also calculated. The value of the Michaelis–Menten constant for the immobilized lipase (0.47 mM) is higher than for the free enzyme (0.21 mM), which indicates that the adsorbed enzyme exhibits a lower affinity to the substrate than native lipase. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:657–665, 2016  相似文献   

16.
Geotrichum sp. lipase with enhanced activity and operational stability was prepared for use in non-aqueous media. A combined strategy comprising bioimprinting with dual imprint molecules and a co-solvent coupled to pH tuning, KCl salt activation, lecithin coating and immobilization on macroporous resin effectively enhanced the activity and operational stability of Geotrichum sp. lipase. The modified lipase exhibited 18.4-fold enhanced esterification activity towards methyl oleate synthesis, and retained 90% activity following repeated use in 10 cycles. The combined strategy exhibited a significant synergistic effect and was suitable for lipase modification, dramatically enhancing the enzyme activity and operational stability. This approach is applicable to the preparation of other enzyme biocatalysts, since the methods are effective for upgrading crude enzyme to a refined product with high activity and stability for use in non-aqueous media.  相似文献   

17.
Amino acid modified chitosan beads (CBs) for immobilization of lipases from Candida rugosa were prepared by activation of a chitosan backbone with epichlorohydrin followed by amino acid coupling. The beads were analyzed by elemental analysis and solid state NMR with coupling yields of the amino acids ranging from 15 to 60%. The immobilized lipase on unmodified chitosan beads showed the highest immobilization yield (92.7%), but its activity was relatively low (10.4%). However, in spite of low immobilization yields (15–50%), the immobilized lipases on the amino acid modified chitosan beads showed activities higher than that of the unmodified chitosan beads, especially on Ala or Leu modified chitosan beads (Ala-CB or Leu-CB) with 49% activity for Ala-CB and 51% for Leu-CB. The immobilized lipases on Ala-CB improved thermal stability at 55 °C, compared to free and immobilized lipases on unmodified chitosan beads and the immobilized lipase on Ala-CB retained 93% of the initial activity when stored at 4 °C for 4 weeks. In addition, the activity of the immobilized lipase on Ala-CB retained 77% of its high initial activity after 10 times of reuse. The kinetic data (kcat/Km) supports that the immobilized lipase on Ala-CB can give better substrate specificity than the unmodified chitosan beads.  相似文献   

18.
《Process Biochemistry》2014,49(2):244-249
The novel enzyme carrier, polyamidoamine (PAMAM) dendrimers modified macroporous polystyrene, has been synthesized by Michael addition and firstly used in the immobilization of porcine pancreas lipase (PPL) effectively by covalent attachment. The resulting carrier was characterized with the Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), elemental analysis and thermogravimetric (TG) analysis. Meanwhile, the amount of immobilized lipase was up to 100 mg g−1 support and the factors related with the enzyme activity were investigated. The immobilization of the PPL improved their performance in wider ranges of pH and temperature. Thermal stability of the immobilized lipase also increased dramatically in comparison with the free ones and the immobilized lipase exhibited a favorable denaturant tolerance. As a biocatalyst, the immobilized lipase for batch hydrolysis of olive oil emulsion retained 85% activity after 10 times of recycling. This well-reusability of immobilized lipase was very valuable and meaningful in enzyme technology.  相似文献   

19.
In the present study, the recovery of activity of Candida antarctica lipase B (CALB) immobilized onto surface-modified rice husk ash (RHA) was 90% for both cross-linking and adsorption methods. Both cross-linked and adsorbed immobilized preparations were very stable, retaining more than 48% of their activity over the range of temperatures studied. The optimum temperature and optimum pH values were 37?°C and 7.0, respectively for both immobilized preparations, while the relative activities after storage at 4.0?°C for 60 days were 55% and 65% using cross-linking and adsorption methods, respectively. Also, the activity of the immobilized lipase began to decrease after 10 cycles, more than 58% of the initial activities were still retained after 10 cycles for both immobilization methods. These results indicated that lipase immobilized by cross-linking and adsorption not only effected activity recovery, but also remarkably effected stability, reusability and application adaptability. It can be concluded that, surface-modified RHA can be used as alternative supports for immobilization of CALB for polymerization reactions.  相似文献   

20.
Yemul O  Imae T 《Biomacromolecules》2005,6(5):2809-2814
Covalent-bonded immobilization of lipase from burkholderia cepacia onto two poly(phenylene sulfide) (PPS) dendrimers with different generations (two and three) was achieved using carbodiimide as a coupling reagent. The hydrolysis activity of olive oil to fatty acid was studied on enzyme-immobilized PPS dendrimers. Enzyme activity was proportional to the enzyme loading, and highest recovered activity was obtained at the medium enzyme loading for both G2 and G3 dendrimers. The immobilization improved the optimum pH and caused the temperature range to widen. Immobilization of enzyme has enhanced the thermal stability of enzyme activity in comparison with free enzyme. The immobilized enzyme as a biocatalyst for batch hydrolysis of olive oil retained 80 approximately 90% activity even after 20 times of recycling. This retention of activity after recycle is very valuable and powerful in enzyme technology. The present noteworthy and vital availability on enzyme reaction of the covalently bonded immobilized lipase on dendrimer came from the structure of dendrimer with a large number of functional terminal groups, which are easily available for immobilization of many lipases at the situation keeping reactive enzymes on the surface of dendrimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号