首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ostrovskaya  O.  Lishko  P.  Beketov  A.  Krishtal  O. 《Neurophysiology》2002,34(2-3):194-194
FLRFa, FIRFa, YMRFa, and some other peptides are found to slow down the kinetics of desensitization of proton-gated currents in rat trigeminal neurons but not in HEK-293T cell culture transfected with ASIC. The observed heterogeneity of peptide action in sensory neurons leads to a suggestion that FMRFa-related peptides may selectively affect transient current components of ASIC and DRASIC/DRASIC-MDEG2 heteromers.  相似文献   

2.
In experiments on the somata of sensory neurons isolated from the spinal and trigeminal ganglia of rats, we characterized three subclasses of proton-gated currents differing from each other in their kinetics of desensitization and characteristics of stationary desensitization (but not in the characteristics of stationary activation). A voltage clamp technique in the whole cell configuration and intracellular perfusion were used. Expression of the channels providing currents of each subclass depended on the soma diameter but not on anatomical localization of the neuron. Proton-gated channels of type I were characterized by mono- or biexponential kinetics of current desensitization with the duration of complete decay within a 1 to 15 sec range; the mean pH50 of the curve of stationary desensitization was 7.21 ± 0.02. Channels of type II possessed mostly monoexponential desensitization kinetics with the duration of decay within a 1 to 3 sec range; their pH50 of the stationary desensitization curve was 7.11 ± 0.02. Channels of type III showed mostly biexponential desensitization kinetics; the complete current decay lasted about 5 sec, while the mean pH50 was about 6.78 ± 0.02. Channels of type I were typical of small neurons (soma diameter 10-20 m), while those of types II and III were found mostly in large cells (35-60 m).  相似文献   

3.
The distribution of different types of ionic channels carrying inward currents was investigated in the somatic membranes of spinal ganglion neurons in rats belonging to three different age groups: at 5–9 days, 45 days, and 3 months. A decrease was found in the number of neuronal membranes operating all four types of inward current channels simultaneously: "fast" (tetrodotoxin-sensitive), "slow" (tetrodotoxin-resistant) sodium currents and low- and high-threshold calcium currents. There were 14.5% of such neurons in the first age group, 5% in the second, and 1% on the third. It was found that this change was related to the disappearance of "slow" (tetrodotoxin-resistant) sodium and high-threshold calcium channels from the membrane. The number of neuronal somatic membranes with only two types of inward current channels ("fast" sodium and high-threshold calcium channels) increased proportionately.A. A. Bogomolets Institute of Technology, Academy of Sciences of the Ukrainian SSR, Kiev Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 813–820, November–December, 1986.  相似文献   

4.
Abstract : Small changes of extracellular pH activate depolarizing inward currents in most nociceptive neurons. It has been recently proposed that acid sensitivity of sensory as well as central neurons is mediated by a family of proton-gated cation channels structurally related to Caenorhabditis elegans degenerins and mammalian epithelial sodium channels. We describe here the molecular cloning of a novel human proton receptor, hASIC3, a 531-amino acid-long subunit homologous to rat DRASIC. Expression of homomeric hASIC3 channels in Xenopus oocytes generated biphasic inward currents elicited at pH <5, providing the first functional evidence of a human proton-gated ion channel. Contrary to the DRASIC current phenotype, the fast desensitizing early component and the slow sustained late component differed both by their cationic selectivity and by their response to the antagonist amiloride, but not by their pH sensitivity (pH50 = 3.66 vs. 3.82). Using RT-PCR and mRNA blot hybridization, we detected hASIC3 mRNA in sensory ganglia, brain, and many internal tissues including lung and testis, so hASIC3 gene expression was not restricted to peripheral sensory neurons. These functional and anatomical data strongly suggest that hASIC3 plays a major role in persistent proton-induced currents occurring in physiological and pathological conditions of pH changes, likely through a tissue-specific heteropolymerization with other members of the proton-gated channel family.  相似文献   

5.
Correlations between densities of various types of inward currents in the somatic membrane of dorsal root ganglion neurons were studied in three different rat age groups: 5–9 days, 45 days, and 90 days. A linear relationship was found in neurons with "slow" tetrodotoxin-sensitive sodium current between the densities of high-threshold calcium current and "slow" sodium current (Bravias-Pearson's correlation coefficient: r=0.84 and 0.70 for n1=16 and n2=28, respectively). No such correlation was observed in neurons with low-threshold calcium inward current. Cells with only two types of channel — "fast" sodium and high-threshold calcium — present in their somatic membrane manifested an inverse correlation (r=–0.48, where n4=95) between the densities of transmembrane currents passing through these channels. No inverse relationship was observed in the density of "fast" sodium and high-threshold calcium currents in neurons with tetradotoxinresistant "slow" sodium and/or low threshold calcium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 820–827, November–December, 1986.  相似文献   

6.
Fast and slow contrast adaptation in retinal circuitry   总被引:8,自引:0,他引:8  
Baccus SA  Meister M 《Neuron》2002,36(5):909-919
The visual system adapts to the magnitude of intensity fluctuations, and this process begins in the retina. Following the switch from a low-contrast environment to one of high contrast, ganglion cell sensitivity declines in two distinct phases: a fast change occurs in <0.1 s, and a slow decrease over approximately 10 s. To examine where these modulations arise, we recorded intracellularly from every major cell type in the salamander retina. Certain bipolar and amacrine cells, and all ganglion cells, adapted to contrast. Generally, these neurons showed both fast and slow adaptation. Fast effects of a contrast increase included accelerated kinetics, decreased sensitivity, and a depolarization of the baseline membrane potential. Slow adaptation did not affect kinetics, but produced a gradual hyperpolarization. This hyperpolarization can account for slow adaptation in the spiking output of ganglion cells.  相似文献   

7.
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.  相似文献   

8.
The present work was undertaken to characterize kinetics, including activation, desensitization and deactivation, of responses mediated by GABAA and GABAC receptors on carp retinal bipolar cells, using the whole-cell patch-clamp technique. It was revealed that the GABAC response was generally slower in kinetics than the GABAA response. Activation kinetics of both the receptors could be well fit by monoexponential functions with time constants τ, being 44.57 ms (GABAC) and 10.86 ms (GABAA) respectively. Desensitization of the GABAA response was characterized by a fast and a slow exponential component with time constants of τfast = 2.16 s and τslow = 19.78 s respectively, whereas desensitization of the GABAC response was fit by a monoexponential function of the time constant τ = 6.98 s. Deactivation at both the receptors was adequately described by biexponential functions with time constants being much higher for the GABAC response (τfast = 674.8 ms; τslow = 2 090 ms) than those for the GABAA response (τfast = 42.07 ms; τslow = 275.1 ms). These differences in kinetics suggest that GABAC and GABAA receptors may be involved in processing signals in different frequency domains.  相似文献   

9.
Presynaptic nicotinic acetylcholine receptors (nAChRs) were studied in myenteric plexus preparations from guinea pig ileum using intracellular electrophysiological methods. Microapplication of nicotine (1 mM) caused a biphasic depolarization in all AH neurons (n = 30) and in 36 of 49 S neurons. Cytisine (1 mM) caused fast depolarizations in S neurons and no response in AH neurons. Mecamylamine (10 microM) blocked all responses caused by nicotine and cytisine. TTX (0.3 microM) blocked slow excitatory synaptic potentials in S and AH neurons but had no effect on fast depolarizations caused by nicotine. Nicotine-induced slow depolarizations were reduced by TTX in two of twelve AH neurons (79% inhibition) and four of nine S neurons (90+/-12% inhibition). Slow nicotine-induced depolarizations in the remaining neurons were TTX resistant. TTX-resistant slow depolarizations were inhibited after neurokinin receptor 3 desensitization caused by senktide (0.1 microM); senktide desensitization inhibited the slow nicotine-induced depolarization by 81+/-5% and 63+/-15% in AH and S neurons, respectively. A low-calcium and high-magnesium solution blocked nicotine-induced slow depolarizations in AH neurons. In conclusion, presynaptic nAChRs mediate the release of substance P and/or neurokinin A to cause slow depolarizations of myenteric neurons.  相似文献   

10.
Despite their simple design, ant mandible movements cover a wide range of forces, velocities and amplitudes. The mandible is controlled by the mandible closer muscle, which is composed of two functionally distinct subpopulations of muscle fiber types: fast fibers (short sarcomeres) and slow ones (long sarcomeres). The entire muscle is controlled by 10-12 motor neurons, 4-5 of which exclusively supply fast muscle fibers. Slow muscle fibers comprise a posterior and an antero-lateral group, each of which is controlled by 1-2 motor neurons. In addition, 3-4 motor neurons control all muscle fibers together. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and subtle movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the subesophageal ganglion. In addition, fast motor neurons and neurons supplying the lateral group of slow closer muscle fibers each invade specific parts of the neuropil that is not shared by the other motor neuron groups. Some bilateral overlap between the dendrites of left and right motor neurons exists, particularly in fast motor neurons. The results explain how a single muscle is able to control the different movement parameters required for the proper function of ant mandibles.  相似文献   

11.
The motor program that drives the swimming behavior of the marine mollusk Tritonia diomedea is generated by three interneuronal populations in the cerebral ganglia. One of these populations, the pair of C2 neurons, is shown to also exert powerful synaptic actions upon most cells in the contralateral pedal ganglion. Intracellular staining with Co2+ showed that the C2 neurons projected to the contralateral pedal ganglion as a single unbranched axon, and nearly all contralateral pedal neurons received monosynaptic input from C2. Orthodromic stimulation of most peripheral nerves caused monosynaptic excitation of C2 by afferent sensory cells and, in some cases, monosynaptic inhibition from an unidentified source. C2 neurons produced four types of postsynaptic potential (PSP) on pedal neurons: (1) a fast, Cl?-mediated inhibition (FIPSP); (2) a fast, Na+-mediated excitation (FEPSP); (3) a slow, K+-mediated inhibition (SIPSP); and (4) a slow, conductance-decrease excitation (SEPSP). All four could be recorded simultaneously in some pedal neurons. The C2 neurons appear to be high-order, multiaction neurons involved in both the generation of a complex motor program and the coordination of ancillary neuronal activity.  相似文献   

12.
The effects of the lectin concanavalin A (Con A), on the kinetics of desensitization of the responses of voltage clampedAchatina fulica LP5 neuron to microperfused acetylcholine (ACh) and GABA were compared. Both ACh and GABA elicited increases in chloride conductance which decayed biphasically during prolonged applications of these agonists; an initial rapid decay was followed by a later slow decay. Con A (5 g/ml) accelerated both the fast and the slow decays of responses to ACh. Con A (5 g/ml) also accelerated the fast decay of responses to GABA, but the slow decay was unaffected, even by 20 g/ml or more of the lectin. It is suggested that, at least in the case of GABA receptor, the fast and slow decays involve distinct desensitization kinetics. The effects of Con A on the desensitization of the ACh and GABA responses were reversed byd-mannose, a competitive and specific inhibitor of Con A binding to membrane sugar residues. These results provide further evidence that receptor desensitization can be influenced by perturbing the sugar moieties associated with the subunits comprising these signalling macromolecules. The carbohydrate residues may play an important role in regulating desensitization of transmitter receptors.Abbreviations ACh acetylcholine - Con A concanavalin A  相似文献   

13.
Electrically operated sodium channels in the somatic membrane of isolated neurons from the rat superior cervical ganglion were investigated using an intracellular dialysis technique and voltage clamping. It was found that sodium currents can be conveyed along two independent systems of sodium channels in these neurons. A mathematical analysis was made of voltage-dependent tetrodotoxin-sensitive fast sodium currents within the framework of the Hodgkin-Huxley model and their kinetic properties were compared with those described in other subjects. It was also shown that the tetrodotoxin-sensitive sodium channels in the somatic membrane of sympathetic neurons have a high affinity for sodium ions. The kinetic and voltage-dependent characteristics of slow tetrodotoxin-sensitive inward sodium current are described. It is also noted that this component of the sodium current was observed in only a limited number of neurons (not more than 2%).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 108–117, January–February, 1986.  相似文献   

14.
Among the three clusters of dorsal unpaired median neurons of the Periplaneta americana terminal abdominal ganglion, another type of neuron has been characterized by anterograde cobalt stainings and microelectrode technique. These neurons are bilaterally distributed in the ganglion. Their axons ipsilaterally exit the ganglion via the anterior proctodeal nerves, to innervate the proctodeum. They are characterized by a long-duration overshooting action potentials and a low firing frequency. Most often the depolarizing phase is composed of two peaks: a fast spike followed by a slow phase. Tetrodotoxin suppressed the fast peak and blocked the spontaneous activity suggesting that sodium channels are involved in the depolarizing phase as well as in the initiation of the action potential. Calcium channel blockers induced a disappearing of the slow depolarizing phase indicating the participation of calcium ions and a reduction of the afterhyperpolarization reflecting the participation of calcium-activated potassium channels. Furthermore, cadmium, as lanthanum or barium, induced a long-lasting plateau potential, which would be due to a persistent sodium conductance. Tetraethylammonium increased the duration of the action potential indicating that potassium channels are implicated in the falling phase. The results demonstrate that these neurons are different from other cells, especially dorsal unpaired median neurons, of the central nervous system of the cockroach.Abbreviations DUM dorsal unpaired median - SDP slow depolarizing phase - AP action potential - PAP plateau action potential - TAG terminal abdominal ganglion - CNS central nervous system  相似文献   

15.
D S McGehee  M F Goy  G S Oxford 《Neuron》1992,9(2):315-324
Bradykinin (BK) excites a subset of dorsal root ganglion neurons by inducing an inward cation current (IBK) that strongly desensitizes and is accompanied by elevations in cGMP. We have examined the links between cGMP metabolism and IBK. The BK dose dependencies of IBK activation, desensitization, and cGMP production are comparable. Stimulation (with sodium nitroprusside [NP] or 8-bromo-cGMP [8Br-cGMP]) or inhibition (with methylene blue, hemoglobin, and nitric oxide synthase [NOS] inhibitors) of cGMP levels did not mimic or diminish IBK. However, desensitization was affected by the following agents: first, desensitization was enhanced by NP and reduced by NOS inhibitors. Second, the effects of NOS inhibitors could be overcome by 8Br-cGMP or L-arginine. Third, 8Br-cGMP modification of desensitization required receptor occupancy. We conclude that the NO-cGMP pathway affects a component of IBK desensitization at the receptor or G protein level.  相似文献   

16.
Purinergic P2X receptors are ligand-gated ion channels that are activated by extracellular adenosine triphosphate (ATP) and are widely expressed not only in the central and peripheral nervous system but also in tissues throughout the body, playing an important role in the transfer of nociceptive information. Since the influence of barbiturates on P2X receptor subtypes is not known, we studied the effects of pentobarbital sodium (PB) on ATP responses in dorsal root ganglion (DRG) neurons. DRG neurons were dissected from 10- to 14-day-old rats and dissociated after enzyme treatment. Electrical measurements were performed using the nystatin-perforated patch recording mode under voltage-clamp conditions. Drugs were applied using the Y-tube method. ATP evoked three types of inward current at -60 mV: fast desensitizing, slow desensitizing, and mixed. The fast-type current was attributed to activation of P2X3 subtype and the slow type to the P2X2 subtype. PB suppressed the fast-type current in a concentration-dependent manner, while the slow type was slightly reduced. A noncompetitive inhibition was suggested by a downward shift of the ATP concentration-response curves. The current-voltage relationships showed inward rectification, and the extent of suppression was not affected by the holding potential. The reduction was greater in external solutions of higher pH. PB had subtype-specific effects on P2X receptors. The ionized form is likely to be responsible for the suppression of the P2X3 receptor current, which may result in a reduction of the excitability of central and peripheral neurons and may contribute to the anesthetic and analgesic actions of the agent.  相似文献   

17.
J Lerma 《Neuron》1992,8(2):343-352
The action of the endogenous polyamine spermine on NMDA-induced responses (in the presence of glycine) was evaluated in cultured spinal cord neurons under voltage- and concentration-clamp conditions. Spermine potentiated NMDA-induced responses in a dose-dependent manner. It was more effective in potentiating steady-state currents (i.e., desensitized response) than the peak phase of the response, indicating that the degree of desensitization was reduced in the presence of the polyamine. Kinetic analysis revealed that the desensitization onset rate, but not recovery rate, was affected by spermine. The effect was voltage independent and was seen in thoroughly dialyzed cells, in which desensitization becomes independent of glycine. Spermine potentiation showed fast on-off kinetics, and intracellular spermine, loaded in the recording pipette, did not occlude potentiation by extracellularly applied spermine. These results are consistent with the existence of a modulatory site for polyamines in the extracellular domain of the NMDA receptor, the activation of which potentiates NMDA receptor function by regulating its desensitization kinetics.  相似文献   

18.
The mammalian nervous system expresses proton-gated ion channels known as acid-sensing ion channels (ASICs). Depending on their location and specialization some neurons express more than one type of ASIC where they may form homo- or heteromeric channels. Macroscopic characteristics of the ASIC currents have been described, but little is known at the single channel level. Here, we have examined the properties of unitary currents of homomeric rat ASIC1alpha, ASIC2a, and ASIC3 expressed in Xenopus oocytes with the patch clamp technique. We describe and characterize properties unique to each of these channels that can be used to distinguish the various types of ASIC channels expressed in mammalian neurons. The amplitudes of the unitary currents in symmetrical Na(+) are similar for the three types of channels (23-18 pS) and are not voltage dependent. However, ASIC1alpha exhibits three subconductance states, ASIC2a exhibits only one, and ASIC3 none. The kinetics of the three types of channels are different: ASIC1alpha and ASIC2a shift between modes of activity, each mode has different open probability and kinetics. In contrast, the kinetics of ASIC3 are uniform throughout the burst of activity. ASIC1alpha, ASIC2a, and ASIC3 are activated by external protons with apparent pH(50) of 5.9, 5.0, and 5.4, respectively. Desensitization in the continual presence of protons is fast and complete in ASIC1alpha and ASIC3 (2.0 and 4.5 s(-1), respectively) but slow and only partial in ASIC2a (0.045 s(-1)). The response to external Ca(2+) also differs: micro M concentrations of extracellular Ca(2+) are necessary for proton gating of ASIC3 (EC(50) = 0.28 micro M), whereas ASIC1alpha and ASIC2a do not require Ca(2+). In addition, Ca(2+) inhibits ASIC1alpha (K(D) = 9.2 +/- 2 mM) by several mechanisms: decrease in the amplitude of unitary currents, shortening of the burst of activity, and decrease in the number of activated channels. Contrary to previous reports, our results indicate that the Ca(2+) permeability of ASIC1alpha is very small.  相似文献   

19.
Organophosphorus inhibitor of acetylcholinesterase (AChE) armin (1 x 10(-6) M) induced a variety of pre- and postsynaptic effects resulting from the AChE inhibition and subsequent accumulation of acetylcholine (ACh) in the synaptic cleft. The intensity of postsynaptic effects (level of neuron depolarization, degree of action potential depression) was shown to be different in the ganglia of frog and rabbit. This could be explained by differences in the total amount of ACh released in response to nerve stimulation as well as at rest. Both muscarinic and nicotinic cholinoreceptors were involved in the process of sustained depolarization of the neurons in the rabbit superior cervical ganglion after AChE inhibition. In frog ganglion neurons the nicotinic receptors did not participate in depolarization evidently due to their fast desensitization. The activation of presynaptic muscarinic receptors resulted in decrease of ACh released by nerve stimulation seems to weaken depolarization and blockade of synaptic transmission in sympathetic ganglia treated by AChE inhibitors.  相似文献   

20.
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号