首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
The ability to translate vast amounts of information, as obtained from lipidomic analysis, into the knowledge and understanding of biological phenomena is an important challenge faced by the lipidomics community. While many of the informatics and computational tools from other domains such as bioinformatics and metabolomics are also applicable to lipidomics data processing and analysis, new solutions and strategies are needed for the studies of lipidomes at the systems level. This is due to enormous functional and structural diversity of lipids as well as because of their complex regulation at multiple spatial and temporal scales. In order to better understand the lipidomes at the physiological level, lipids need to be modeled not only at the level of biological pathways but also at the level of the biophysical systems they are part of, such as cellular membranes or lipoprotein particles. Herein the current state, recent advances and new opportunities in the field of lipid bioinformatics are reviewed.  相似文献   

2.
Lipidomics is a subspecialty of metabolomics that focuses on water insoluble metabolites that form membrane barriers. Most lipidomic databases catalog lipids from common model organisms, like humans or Escherichia coli. However, model organisms' lipid profiles show surprisingly little overlap with those of specialized pathogens, creating the need for organism-specific lipidomic databases. Here we review rapid progress in lipidomic platform development with regard to chromatography, detection and bioinformatics. We emphasize new methods of comparative lipidomics, which use aligned datasets to identify lipids changed after introducing a biological variable. These new methods provide an unprecedented ability to broadly and quantitatively describe lipidic change during biological processes and identify changed lipids with low error rates.  相似文献   

3.
A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.  相似文献   

4.
Lipoproteins are of fundamental importance for the lipid transport and cardiovascular disease. The function and metabolism of lipoproteins is intimately linked to the biophysical properties of their surface lipids. Although a number of disease associations were found for lipid species in plasma, only a few studies reported lipid profiles of lipoproteins. Here, we provide an overview of techniques for lipoprotein separation, methods for lipid species analysis based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) as well as data from recent lipidomic studies on lipoprotein fractions. We also discuss the different analytical strategies and how lipid profiling can expand our understanding of the biology and structures of lipoproteins.  相似文献   

5.
Lipids play crucial roles in the biology of organisms, particularly relating to cellular membranes, energy storage, and intra- or inter-cellular signalling. Despite the recent expansion of the lipidomics field, very little is known about the biology of lipids in metzoan pathogens, and, to date, there has been no global lipidomic study of a parasitic nematode. Using Haemonchus contortus (barber's pole worm) as a model, we describe the first known global lipidome for a parasitic nematode via high throughput LC–MS/MS-based lipidomics. We identified a total of 554 lipid species across four lipid categories, and 18 lipid classes exhibited alterations among six developmental stages (eggs; L3 and exsheathed L3 (xL3) and L4 larval stages; female and male adults) of H. contortus. The lipid composition and abundance of H. contortus changed significantly during the transition from free-living (egg, L3 and xL3) to parasitic (L4 and adult) stages. The three main changes observed were: (i) decreased synthesis of triradylglycerols; (ii) increased glycerophospholipids (predominantly glycerophosphoethanolamines and glycerophosphocholines); and (iii) a ‘cooperative’ modulation of ether-linked lipids and saturated fatty acids. These changes suggest specific adaptations, in terms of nutrient acquisition, metabolism and development, as the nematode makes its transition to the parasitic stage inside the host animal. This lipidomic data set serves as a stimulus for studies to understand lipid biology in parasitic worms, and their roles in parasite–host interactions and disease processes.  相似文献   

6.
《遗传学报》2020,47(9):523-534
Apolipoprotein M (apoM) participates in both high-density lipoprotein and cholesterol metabolism. Little is known about how apoM affects lipid composition of the liver and serum. In this study, we systemically investigated the effects of apoM on liver and plasma lipidomes and how apoM participates in lipid cycling, via apoM knockout in mice and the human SMMC-7721 cell line. We used integrated mass spectrometry-based lipidomics approaches to semiquantify more than 600 lipid species from various lipid classes, which include free fatty acids, glycerolipids, phospholipids, sphingolipids, glycosphingolipids, cholesterol, and cholesteryl esters (CEs), in apoM-/- mouse. Hepatic accumulation of neutral lipids, including CEs, triacylglycerols, and diacylglycerols, was observed in apoM-/- mice; while serum lipidomic analyses showed that, in contrast to the liver, the overall levels of CEs and saturated/monounsaturated fatty acids were markedly diminished. Furthermore, the level of ApoB-100 was dramatically increased in the liver, whereas significant reductions in both ApoB-100 and low-density lipoprotein (LDL) cholesterol were observed in the serum of apoM-/- mice, which indicated attenuated hepatic LDL secretion into the circulation. Lipid profiles and proinflammatory cytokine levels indicated that apoM-/- leads to hepatic steatosis and an overall state of metabolic distress. Taken together, these results revealed that apoM knockout leads to hepatic steatosis, impaired lipid secretion, and an overall state of metabolic distress.  相似文献   

7.
8.
9.
Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a well-developed technology for global lipid analysis, which identifies and quantifies individual lipid molecular species directly from lipid extracts of biological samples. By using this technology, we have revealed three marked changes of lipids in brain samples of subjects with mild cognitive impairment of Alzheimer's disease including sulfatides, ceramides, and plasmalogens. Further studies using MDMS-SL lead us to the identification of the potential biochemical mechanisms responsible for the altered lipids at the disease state, which are thoroughly discussed in this minireview. Specifically, in studies to identify the causes responsible for sulfatide depletion at the mild cognitive impairment stage of Alzheimer's disease, we have found that apolipoprotein E is associated with sulfatide transport and mediates sulfatide homeostasis in the nervous system through lipoprotein metabolism pathways and that alterations in apolipoprotein E-mediated sulfatide trafficking can lead to sulfatide depletion in the brain. Collectively, the results obtained from lipidomic analyses of brain samples provide important insights into the biochemical mechanisms underlying the pathogenesis of Alzheimer's disease.  相似文献   

10.
This study compared the molecular lipidomic profile of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identified 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profile in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N-acyltaurines were significantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were significantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identified individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These findings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profile of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease.  相似文献   

11.
Lung cancer is a leading cause of cancer‐related deaths with an increasing incidence and poor prognoses. To further understand the regulatory mechanisms of lipidomic profiles in lung cancer subtypes, we measure the profiles of plasma lipidome between health and patients with lung cancer or among patients with squamous cell carcinomas, adenocarcinoma or small cell lung cancer and to correct lipidomic and genomic profiles of lipid‐associated enzymes and proteins by integrating the data of large‐scale genome screening. Our studies demonstrated that circulating levels of PS and lysoPS significantly increased, while lysoPE and PE decreased in patients with lung cancer. Our data indicate that lung cancer‐specific and subtype‐specific lipidomics in the circulation are important to understand mechanisms of systemic metabolisms and identify diagnostic biomarkers and therapeutic targets. The carbon atoms, dual bonds or isomerism in the lipid molecule may play important roles in lung cancer cell differentiations and development. This is the first try to integrate lipidomic data with lipid protein‐associated genomic expression among lung cancer subtypes as the part of clinical trans‐omics. We found that a large number of lipid protein‐associated genes significantly change among cancer subtypes, with correlations with altered species and spatial structures of lipid metabolites.  相似文献   

12.

Background

The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics.

Methodology and Principal Findings

Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens.

Conclusions and Significance

LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration.  相似文献   

13.
目的:急性缺血性脑卒中(Acute ischemic stroke, AIS)是由于血流减少导致的脑功能突然丧失。由于AIS发病机制是异质性和多因素的,我们建立全面的脂质组学方法来阐明AIS进程相关的脂质变化和复杂的脂质代谢网络。方法:选取26例AIS患者血液标本和27例健康志愿者血清作为研究对象,进行总脂抽提,通过基于LC-MS策略的非靶向脂质组学方法进行规模性、整体性的脂质组学分析。结果:对AIS患者和健康志愿者血浆进行大规模脂质定性定量分析,通过Progenesis~? QI软件分析Xevo~? G2-XS QTOF质谱系统MSE采集的子离子数据,精确定量到1054个脂质特征差异,准确定性得到368个脂质分子,多变量统计分析中差异脂质组成能将AIS患者和健康志愿者区分开来,通路富集分析图显示差异脂质主要参与甘油磷脂代谢的紊乱。结论:AIS患者血浆脂质组成与健康志愿者存在显著差异,差异表达的脂质可能与AIS发生有关。这些发现有助于开发新的诊断标志物和AIS治疗靶点。  相似文献   

14.
Clinical lipidomics is a new extension of lipidomics to study lipid profiles, pathways, and networks by characterizing and quantifying the complete lipid molecules in cells, biopsy, or body fluids of patients. It undoubtfully has more values if lipidomics can be integrated with the data of clinical proteomic, genomic, and phenomic profiles. A number of challenges, e.g., instability, specificity, and sensitivity, in lipidomics have to be faced and overcome before clinical application. The association of lipidomics data with gene expression and sequencing of lipid-specific proteins/enzymes should be furthermore clarified. Therefore, clinical lipidomics is expected to be more stable during handling, sensitive in response to changes, specific for diseases, efficient in data analyses, and standardized in measurements, in order to meet clinical needs. Clinical lipidomics will become a more important approach in clinical applications and will be the part of “natural” measures for early diagnosis and progress of disease. Thus, clinical lipidomics will be one of the most powerful approaches for disease-specific diagnosis and therapy, once the mystery of lipidomic profiles and metabolic enzymes is deciphered.  相似文献   

15.
Diatoms are very efficient in their use of available nutrients. Changes in nutrient availability influence the metabolism and the composition of the cell constituents. Since diatoms are valuable candidates to search for oil producing algae, measurements of diatom-produced compounds can be very useful for biotechnology. In order to explore the diversity of lipophilic compounds produced by diatoms, we describe the results from an analysis of 13 diatom strains. With the help of a lipidomics platform, which combines an UPLC separation with a high resolution/high mass accuracy mass spectrometer, we were able to measure and annotate 142 lipid species. Out of these, 32 were present in all 13 cultures. The annotated lipid features belong to six classes of glycerolipids. The data obtained from the measurements were used to create lipidomic profiles. The metabolomic overview of analysed cultures is amended by the measurement of 96 polar compounds. To further increase the lipid diversity and gain insight into metabolomic adaptation to nitrogen limitation, diatoms were cultured in media with high and low concentrations of nitrate. The growth in nitrogen-deplete or nitrogen-replete conditions affects metabolite accumulation but has no major influence on the species-specific metabolomic profile. Thus, the genetic component is stronger in determining metabolic patterns than nitrogen levels. Therefore, lipid profiling is powerful enough to be used as a molecular fingerprint for diatom cultures. Furthermore, an increase of triacylglycerol (TAG) accumulation was observed in low nitrogen samples, although this trend was not consistent across all 13 diatom strains. Overall, our results expand the current understanding of metabolomics diversity in diatoms and confirm their potential value for producing lipids for either bioenergy or as feed stock.  相似文献   

16.
The emerging field of lipidomics, driven by technological advances in lipid analysis, provides greatly enhanced opportunities to characterize, on a quantitative or semi-quantitative level, the entire spectrum of lipids, or lipidome, in specific cell types. When combined with advances in other high throughput technologies in genomics and proteomics, lipidomics offers the opportunity to analyze the unique roles of specific lipids in complex cellular processes such as signaling and membrane trafficking. The yeast system offers many advantages for such studies, including the relative simplicity of its lipidome as compared to mammalian cells, the relatively high proportion of structural and regulatory genes of lipid metabolism which have been assigned and the excellent tools for molecular genetic analysis that yeast affords. The current state of application of lipidomic approaches in yeast and the advantages and disadvantages of yeast for such studies are discussed in this report.  相似文献   

17.

Introduction

Rheumatoid arthritis (RA) is linked to increased cardiovascular morbidity and mortality, not completely explained by traditional risk factors. Importantly, the increased risk occurs despite lower levels of total and low-density lipoprotein cholesterol. Whilst systemic inflammation may be a factor, it is possible that changes in individual lipid species contribute to the increased cardiovascular risk.

Objectives

In the present study, we characterized plasma lipidomic profiles in patients with RA in comparison with healthy controls.

Methods

Patients with RA (n = 32) and age- and gender-matched healthy volunteers (n = 84) were recruited. Fasting plasma lipid profiles were measured using electrospray-ionisation tandem mass spectrometry. 24 lipid classes and subclasses were measured.

Results

Patients with RA had normal total, low-density lipoprotein and high-density lipoprotein cholesterol, but higher triglycerides than controls. Five lipid classes (dihydroceramides, alkylphosphatidylethanolamine, alkenylphosphatidylethanolamine, lysophosphatidylinositol, phosphatidylserine) differed between patients with RA and controls. Then we measured 36 lipid species within these 5 classes and found that 11 lipid species were different between patients with RA and controls. Three lipid classes (dihydroceramides, lysophosphatidylinositol, phosphatidylserine) and 10 lipid species remained significantly associated with RA after adjusting for age, sex, body mass index, current smoking, systolic blood pressure and anti-hypertensive treatment in a binary logistic regression model.

Conclusion

This study has identified lipid alterations in RA. These alterations of lipids warrant further investigation as they may be associated with accelerated atherosclerosis and joint inflammation in patient with RA.
  相似文献   

18.
Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients'' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects'' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.  相似文献   

19.
Systems biology is a new and rapidly developing research area in which,by quantitativelydescribing the interaction among all the individual components of a cell,a systems-level understanding of abiological response can be achieved.Therefore,it requires high-throughput measurement technologies forbiological molecules,such as genomic and proteomic approaches for DNA/RNA and protein,respectively.Recently,a new concept,lipidomics,which utilizes the mass spectrometry(MS)method for lipid analysis,has been proposed.Using this lipidomic approach,the effects of N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)on sphingomyelin metabolism,a major class of sphingolipids,were evaluated.Sphingomyelin moleculeswere extracted from cells and analyzed by matrix-assisted laser desorption ionization-time of flight MS.Itwas found that MNNG induced profound changes in sphingomyelin metabolism,including the appearance ofsome new sphingomyelin species and the disappearance of some others,and the concentrations of severalsphmgomyelin species also changed.This was accompanied by the redistribution of acid sphingomyelinase(ASM),a key player in sphingomyelin metabolism.On the other hand,imipramine,an inhibitor of ASM,caused the accumulation of sphingomyelin.It also prevented some of the effects of MNNG,as well as theredistribution of ASM.Taken together,these data suggested that the lipidomic approach is highly effectivefor the systematic analysis of cellular lipids metabolism.  相似文献   

20.
Systems biology is a new and rapidly developing research area in which, by quantitatively describing the interaction among all the individual components of a cell, a systems-level understanding of a biological response can be achieved. Therefore, it requires high-throughput measurement technologies for biological molecules, such as genomic and proteomic approaches for DNA/RNA and protein, respectively.Recently, a new concept, lipidomics, which utilizes the mass spectrometry (MS) method for lipid analysis,has been proposed. Using this lipidomic approach, the effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on sphingomyelin metabolism, a major class of sphingolipids, were evaluated. Sphingomyelin molecules were extracted from cells and analyzed by matrix-assisted laser desorption ionization-time of flight MS. It was found that MNNG induced profound changes in sphingomyelin metabolism, including the appearance of some new sphingomyelin species and the disappearance of some others, and the concentrations of several sphingomyelin species also changed. This was accompanied by the redistribution of acid sphingomyelinase (ASM), a key player in sphingomyelin metabolism. On the other hand, imipramine, an inhibitor of ASM,caused the accumulation of sphingomyelin. It also prevented some of the effects of MNNG, as well as the redistribution of ASM. Taken together, these data suggested that the lipidomic approach is highly effective for the systematic analysis of cellular lipids metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号