首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a clear, positive correlation in amplitude between changes in potassium potentials (deltaEK) and focal potentials (deltaV) evoked by tetanic stimulation of afferent nerves in the cuneate nucleus and dorsal horn of cats under Dial anaesthesia or after decerebration. Data obtained with stimulations at various frequencies and intensities, or recording at different positions give a relatively constant slope of deltaV/deltaEK (varying between 0.2 and 0.6 in different experiments). These observations are fully consistent with the possibility that deltaV mainly reflects changes in extracellular potassium concentration caused by the release of K+ from active terminals. Differences in time course of deltaEK ANd deltaV evoked by single stimuli are a steep function of distance and therefore can be ascribed to the slowness of diffusion, without excluding the possibility of an early additional depolarizing effect by another mechanism.  相似文献   

2.
We have used rapid mixing and quenching techniques to measure the initial ATP synthesis rates and the duration of the ATP synthetic capacity derived from artificially imposed proton gradients and valinomycin-mediated K+ diffusion potentials in chloroplasts. The initial rate of ATP synthesis driven by a K+ diffusion potential was 10-fold slower than that driven by an acid-base transition of equivalent electrochemical potential. Total yields of ATP resulting from a K+ concentration shift were only slightly affected by the absence of Cl-, indicating that Cl- permeability does not significantly reduce the K+ diffusion potential. The ATP synthetic capacity decayed with a half-life of 0.2 s in the case of a K+ diffusion potential and a half-life of 1.0 s in the case of an acid-base shift. In both cases, ATP, added at the time of the pH or [KCl] shift, slowed the decay of the ATP synthesis rates, indicating that the coupling factor controls a channel for proton efflux, as proposed earlier (Portis, A.R., and McCarty, R.E. (1974) J. Biol. Chem. 249, 6250-6254). Because the proton gradient has a longer half-life than the K+ diffusion potential, when combinations of the two are employed to drive ATP synthesis, the proton gradient will make a larger contribution to the initial rate and total yield than that predicted from a strictly linear proportionality of the initial magnitudes of the two gradients.  相似文献   

3.
There is increasing evidence that heat shock (HS) has long-term effects on electrophysiological properties of neurons and synapses. Prior HS protects neural circuitry from a subsequent heat stress but little is known about the mechanisms that mediate this plasticity and induce thermotolerance. Exposure of Locusta migratoria to HS conditions of 45 degrees C for 3 h results in thermotolerance to hitherto lethal temperatures. Locust flight motor patterns were recorded during tethered flight at room temperature, before and after HS. In addition, intracellular action potentials (APs) were recorded from control and HS motoneurons in a semi-intact preparation during a heat stress. HS did not alter the timing of representative depressor or elevator muscle activity, nor did it affect the ability of the locust to generate a steering motor pattern in response to a stimulus. However, HS did increase the duration of APs recorded from neuropil segments of depressor motoneurons. Increases in AP duration were associated with protection of AP generation against failure at subsequent elevated temperatures. Failure of AP generation at high temperatures was preceded by a concomitant burst of APs and depolarization of the membrane. The protective effects of HS were mimicked by pharmacological blockade of I(K+) with tetraethylammonium (TEA). Taken together, these findings are consistent with a hypothesis that HS protects neuronal survival and function via K+ channel modulation.  相似文献   

4.
When guinea-pig papillary muscles were depolarized to ca. -30 mV by superfusion with K+-free Tyrode's solution supplemented with Ba2+, Ni2+, and D600, addition of Cs+ transiently hyperpolarized the membrane in a reproducible manner. The size of the hyperpolarization (pump potential) depended on the duration of the preceding K+-free exposure; peak amplitudes (Epmax) elicited by 10 mM Cs+ after 5-, 10-, and 15-min K+-free exposures were 12.9, 17.7, and 23.2 mV, respectively. Pump potentials were unaffected by external Cl- but suppressed by cardiac glycosides, hyperosmotic conditions, and low-Na+ solution. Using Epmax as an indicator of Na+ pump activation, the half-maximal concentration for activation by Cs+ was 12-16.3 mM. At 6 mM, Cs+ was three times less potent than Rb+ or K+ and five times more potent than Li+. From these findings, and correlative voltage-clamp data from myocytes, we calculate that (i) a pump current of 7.8 nA/cm2 generates an Epmax of 1 mV and (ii) resting pump current in normally polarized muscle (approximately 0.16 microA/cm2) is five times smaller than previously estimated.  相似文献   

5.
We studied the effects of the dihydropyridine derivative BAY K 8644 on the membrane potential of B-cells in mouse pancreatic islets. BAY K 8644, in a dose-dependent manner, decreased the spike frequency but increased the duration of the spikes elicited by glucose with or without quinine or tetraethylammonium (TEA). These effects were antagonized by cobalt and nifedipine but not by tetrodotoxin. The interval between spikes was proportionate to the duration of the spikes and the ratio of the interval to the spike duration was constant at all concentrations of BAY K 8644 tested. Peak inward current, estimated from the derivative of the action potential recorded in the presence of TEA, was increased by BAY K 8644 and decreased by nifedipine. BAY K 8644 elicited spike activity when the membrane was moderately depolarized by either 5.6 mM glucose or 15 mM K+, but did not change the membrane potential of the resting hyperpolarized B-cell. These results suggest that BAY K 8644 acts on the open Ca2+-channels. The threshold occurs at a membrane potential of -50 mV. Also, the modifications of the shape of the spikes appear to reflect specific changes in Ca2+ entry. We propose the existence of a Ca2+-induced Ca2+-channel inactivation process in the pancreatic B-cell.  相似文献   

6.
The intrinsic dynamics of bipolar cells and rod photoreceptors isolated from tiger salamanders were studied by a patch-clamp technique combined with estimation of effective impulse responses across a range of mean membrane voltages. An increase in external K(+) reduces the gain and speeds the response in bipolar cells near and below resting potential. High external K(+) enhances the inward rectification of membrane potential, an effect mediated by a fast, hyperpolarization-activated, inwardly rectifying potassium current (K(IR)). External Cs(+) suppresses the inward-rectifying effect of external K(+). The reversal potential of the current, estimated by a novel method from a family of impulse responses below resting potential, indicates a channel that is permeable predominantly to K(+). Its permeability to Na(+), estimated from Goldman-Hodgkin-Katz voltage equation, was negligible. Whereas the activation of the delayed-rectifier K(+) current causes bandpass behavior (i.e., undershoots in the impulse responses) in bipolar cells, activation of the K(IR) current does not. In contrast, a slow hyperpolarization-activated current (I(h)) in rod photoreceptors leads to pronounced, slow undershoots near resting potential. Differences in the kinetics and ion selectivity of hyperpolarization-activated currents in bipolar cells (K(IR)) and in rod photoreceptors (I(h)) confer different dynamical behavior onto the two types of neurons.  相似文献   

7.
Intracellular potassium and membrane potential were measured simultaneously by means of double-barrelled liquid ion-exchange microelectrodes in single fibers of rat thigh muscle in vivo in rats maintained in seven different metabolic states. The K+ equilibrium potential (EK) was more negative than the simultaneously measured membrane potential (Em) in the normal state by 18.4 mV. K+ loading, acute and chronic, resulted in depolarization of Em due to increased serum K+ (hyperkalemia) with no increase in intracellular K+. K+ depletion resulted in hyperpolarization of Em as plasma K+ decreased proportionately more than intracellular K+. Low Na+ diet had no effect. Intracellular K+ was decreased in acute acidosis but not in the chronic state. Thus K+ depletion and acute acidosis are associated with intracellular K+ decrease. The fact that hyperpolarization exists in the former and not the latter is a reflection that hypokalemia accompanies the former condition. The hyperpolarizing states of K+ depletion and chronic acidosis are accompanied by decreased excitability and muscle weakness.  相似文献   

8.
The effect of changing the ionic composition of bathing fluid on the receptor potential of primary endings has been examined in isolated mammalian spindles whose capsule was removed in the sensory region. After impulse activity is blocked by tetrodotoxin, ramp-and-hold stretch evokes a characteristic pattern of potential change consisting of a greater dynamic depolarization during the ramp phase and a smaller static depolarization during the hold phase. After a high-velocity ramp there is a transient post-dynamic undershoot to below the static level. On release from hold stretch, the potential shows a postrelease undershoot relative to base line. The depolarization produced by stretch is rapidly decreased by the removal of Na+ and Ca2+. Addition of normal Ca2+ partly restores the response. Stretch appears to increase the conductance to Na+ and Ca2+ in the sensory terminals. The postdynamic undershoot is diminished by raising external K+ and blocked by tetraethylammonium (TEA). It apparently results from a voltage-dependent potassium conductance. The postrelease undershoot is decreased by raising external K+, but is not blocked by TEA. It is presumably caused by a relative increase in potassium conductance on release. Substitution of isethionate for Cl- or the addition of ouabain does not alter the postdynamic and postrelease undershoots.  相似文献   

9.
Nitella cells were loaded with 45Ca2+ to an activity of 2 X 10(5) cpm. Insertion of two glass-capillary electrodes into each of six cells released varying amounts of Ca2+ in the order of 1 mumol per cell, but hyperpolarizing and depolarizing pulses up to 500 ms in duration caused no measurable loss (less than 57 pmol) of Ca2+ even when the latter elicited action potentials. Addition of 10 mumol of Ba2+ or tetraethylammonium (TEA) caused losses up to 1200 pmol of Ca2+ from the cells and prolonged the action potentials by a factor of three or more. Subsequent addition of Ba2+ or TEA to treated cells caused no further losses of Ca. Because prolonged action potentials can apparently only be elicited after the chelation or displacement of Ca2+, we propose that, as in many animal cells, the K+ channels responsible for the normal brief repolarizing phase of the action potential are controlled by Ca2+ in these electrically excitable plant cells.  相似文献   

10.
P Chin  S S Brody 《Biochemistry》1975,14(6):1190-1193
The surface properties of monomolecular films of oxidized and reduced cytochromes f and c were measured at an air-water interface. Area/molecular (A) and surface potential (deltaV) for oxidized and reduced forms of the cytochromes were measured as a function of pH. Oxidized cyt f has a maximum for both A and deltaV at pH 7.5. At a surface pressure of 6 dyn/cm the maximum A equals 2600 plus or minus 50 A2 and the maximum deltaV equals 200 plus or minus 10 mV. Reduced cyt f as a function of pH has a minimum value for both A (2200 A2) and deltaV (95 mV). Oxidized cyt c as a function of pH has minima for A (140 A2) and deltaV (188 mV) at pH 7.0 and 7.3, respectively. On the other hand, reduced cyt has maximum values for A (220 A2) and deltaV (260 mV) at pH 7.0 and 7.3, respectively.  相似文献   

11.
A model is formulated for characterizing the behavior of the acetylcholine (ACh)-sensitive K+ membrane channel (muscarinic channel) in bullfrog atrial myocytes. Parameters of the muscarinic current model are chosen in fit available data from the literature on bullfrog atrial myocytes (3, 4, 45). This model is subsequently incorporated into a large mathematical model of the bullfrog myocyte that is based on quantitative whole-cell voltage clamp data (40). Simulations are conducted on the active atrial cell model in bathing media containing ACh at different concentrations to explore the effect of this muscarinic channel on the electrical behavior of the myocyte. The model predicts a progressive shortening of the action potential with increasing [ACh], as well as an indirect influence of the muscarinic K+ current on the other membrane currents of the atrial cell. Interpretation of the simulation results provides suggestions for the probable mechanisms underlying the shortening of the action potential due to activity of the muscarinic channel. Specifically, the model predicts that with an increase in ACh concentration: (a) the outward muscarinic current, IK,ACh(t), increases in magnitude but shortens in duration; (b) the calcium current, ICa(t), may increase in magnitude, but when it does so it decreases in duration compared with the control conditions; (c) the intracellular Ca2+ concentration [Ca2+]i waveform during the action potential decreases in both magnitude and duration. Because the contractile activity of the cell is controlled by the [Ca2+]i waveform, the model predicts a decrease in contractile strength with an increase in ACh concentration in the bathing medium; i.e., a negative inotropic effect.  相似文献   

12.
The duration of action potentials from single nodes of Ranvier can be increased by several methods. Extraction of water from the node (e.g. by 2 to 3 M glycerin) causes increased durations up to 1000 msec. 1 to 5 min. after application of the glycerin the duration of the action potential again decreases to the normal value. Another type of prolonged action potential can be observed in solutions which contain K or Rb ions at concentrations between 50 mM and 2 M. The nodes respond only if the resting potential is restored by anodal current. The kinetics of these action potentials is slightly different. Their maximal durations are longer (up to 10 sec.). Like the normal action potential, they are initiated by cathodal make or anodal break. They also occur in external solutions which contain no sodium. The same type of action potentials as in KCl is found when the node is depolarized for some time (15 to 90 sec., 100 to 200 mv.) and is then stimulated by cathodal current. These action potentials require no K or Na ions in the external medium. Their maximal duration increases with the strength and duration of the preceding depolarization. The possible origin of the action potentials in KCl and after depolarization, and their relation to the normal action potentials and the negative after-potential are discussed.  相似文献   

13.
1. Membrane currents have been recorded from the soma of a bifunctional basalar/coxal depressor motoneurone in the metathoracic ganglion of the cockroach (Periplaneta americana) using a two-electrode voltage-clamp technique. 2. This motoneurone cell body is normally inexcitable when studied under current-clamp. Appropriate depolarizing command steps evoke rapid transient outward currents and late outward currents. 3. Late outward currents are dominated by a Ca-dependent component that confers an N-shaped I-V relationship on the neurone. 4. The Ca-dependent outward current is suppressed by Cd2+ (1 mM), Mn2+ (5 mM) or verapamil (50 microM). 5. Externally applied tetraethylammonium ions (TEA+) (25 mM) block the Ca-dependent current, but also appear to suppress a component of the late outward current that is independent of Ca2+. 6. Aminopyridines cause only minor suppression of late outward currents, but shift the peak in the N-shaped I-V relationship to more negative potentials. 7. The reversal potential of tail currents recorded following pre-pulses to +50 mV were dependent upon the pre-pulse duration; increasing the duration from 10 to 50 msec caused a +17 mV shift in tail current reversal potential. 8. A five-fold increase in the K+ concentration of the solution bathing the preparation only produced small and inconsistent changes in the reversal potential of tail currents. 9. Five-fold reduction in external Cl- caused no change. 10. The dependence of tail current reversal potential upon pre-pulse duration and the limited effect of alterations in the composition of the bathing solution are discussed in the context of restricted ion movements near the external surface of the cell membrane.  相似文献   

14.
We report that both Na+ and Ca2+ currents are involved in the action potentials and in the hormone release from rat somatotrophs in primary culture. Single somatotrophs were identified by reverse hemolytic plaque assay (RHPA) and transmembrane voltage and currents were recorded using the whole-cell mode of the patch-clamp technique. Somatotrophs displayed a mean resting potential of -80mV and an average input resistance of 5.7G omega. Most of the cells showed spontaneous or evoked action potentials. Single action potentials or the initial spike in a burst were characterized by their high amplitude and short duration. Tetrodotoxin (TTX, 1 microM) blocked single action potentials and the initial spikes in a burst, whereas action potentials of long duration and low amplitude persisted. Cobalt (2 mM) plus TTX (1 microM) blocked all the action potentials. Voltage-clamp experiments confirmed the presence of both a TTX-sensitive Na+ current and Co2(+)-sensitive Ca2+ currents. TTX or Na(+)-free medium slightly decreased the basal release of GH but did not markedly modify hGRF-stimulated GH release. However, Co2+ (2 mM), which partially decreased the basal release, totally blocked hGRF-stimulated release. We conclude that (1) Na+ currents which initiate rapid action potentials may participate in spontaneous GH release; (2) Ca2+ currents, which give rise to long duration action potentials and membrane voltage fluctuation, are probably involved in both basal and hGRF-stimulated GH releases.  相似文献   

15.
兔肺静脉肌袖心肌细胞动作电位的特性和一些离子流机制   总被引:3,自引:0,他引:3  
Ding HY  Yang XC  Liu XL  Liu TF  Bao RF 《生理学报》2006,58(2):129-135
研究兔肺静脉肌袖心肌细胞(cardiomyocytes from rabbit pulmonary vein sleeves, PVC)动作电位的特性和一些离子流机制——内向整流钾电流(IKl)、瞬时外向钾电流(ITo)和非选择性阳离子流(I NSCC),并与左心房心肌细胞(left atrial cardiomyocytes,LAC)进行比较。采用全细胞膜片钳技术,记录动作电位和上述各离子流。发现PVC动作电位时程(action potential duration,APD)较LAC的明显延长,并可以诱发出第二平台反应。PVC上存在I NSCC. PVC的IKl、I To和I NSCC电流密度均较LAC的明显减小。PVC和LAC存在复极离子流的差异,这种差异构成了两者动作电位差异的基础,进而可能成为肺静脉肌袖致心律失常特性的重要离子流机制。  相似文献   

16.
Slow Ca-action potentials (CaAP) were studied in normal human skeletal muscle fibers obtained during surgery (fibers with both ends cut). Control studies also were carried out with intact as well as cut rat skeletal muscle fibers. Experiments were performed in hypertonic Cl-free saline with 10 or 84 mM Ca and K-channel blockers; muscles were preincubated in a saline containing Cs and tetraethylammonium. A current-clamp technique with two intracellular microelectrodes was used. In human muscle, 14.5% of the fibers showed fully developed CaAPs, 21% displayed nonregenerative Ca responses, and 64.5% showed only passive responses; CaAPs were never observed in 10 mM Ca. In rat muscle, nearly 90% of the fibers showed CaAPs, which were not affected by the cut-end condition. Human and rat muscle fibers had similar membrane potential and conductance in the resting state. In human muscle (22-32 degrees C, 84 mM Ca), the threshold and peak potential during a CaAP were +26 +/- 6 mV and +70 +/- 3 mV, respectively, and the duration measured at threshold level was 1.7 +/- 0.5 sec. In rat muscle, the duration was four times longer. During a CaAP, membrane conductance was assumed to be a leak conductance in parallel with a Ca and a K conductance. In human muscle (22-32 degrees C, 84 mM Ca, 40 micron fiber diameter), values were 0.4 +/- 0.1 microS, 1.1 +/- 0.7 microS, and 0.9 +/- 0.4 microS, respectively. Rat muscle (22-24 degrees C, 84 mM Ca) showed leak and K conductances similar to those found in human fibers. Ca-conductance in rat muscle was double the values obtained in human muscle fibers.  相似文献   

17.
In isolated slices of hypothalamus, suprachiasmatic nucleus (SCN) neurons were recorded intracellularly. Blockade of Ca++ channels increased spike duration, eliminating an early component of the afterhyperpolarization (AHP) that followed evoked spikes. The duration and reversal potential of AHPs were, however, unaffected, suggesting that only an early, fast component of the AHP was Ca(++)-dependent. Unlike other central neurons that exhibit pacemaker activity, therefore, SCN neurons do not display a pronounced, long-lasting Ca(++)-dependent AHP. Extracellular Ba++ and intracellular Cs+ both revealed slow depolarizing potentials evoked either by depolarizing current injection, or by repolarization following large hyperpolarizations. They had different effects on the shape of spikes and the AHPs that followed them, however. Cs+, which blocks almost all K+ channels, dramatically reduced resting potential, greatly increased spike duration (to tens of milliseconds), and blocked AHPs completely. In contrast, Ba++ had little effect on resting potential and produced only a small increase in spike duration, depressing an early Ca(++)-dependent component and a later Ca(++)-independent component of the AHP. The relatively weak pacemaker activity of SCN neurons appears to involve voltage-dependent activation of at least one slowly inactivating inward current, which brings the cells to firing threshold and maintains tonic firing; both Ca(++)-dependent and Ca(++)-independent K+ channels, which repolarize cells after spikes and maintain interspike intervals; and Ca++ channels, which contribute to activation of Ca(++)-activated K+ currents and may also contribute to slow depolarizing potentials. In the absence of powerful synaptic inputs, SCN neurons express a pacemaker activity that is sufficient to maintain an impressively regular firing pattern. Slow, repetitive activation of optic input, however, increases local circuit activity to such an extent that the normal pacemaker potentials are overridden and firing patterns are altered. Since SCN neurons are very small and have large input resistances, they are particularly susceptible to synaptic input.  相似文献   

18.
It has been hypothesized that the light-evoked rod hyperpolarization (the receptor potential) initiates the light-evoked decrease in extracellular potassium ion concentration, [K+]o, in the distal retina. The hypothesis was tested using the isolated, superfused retina of the toad, Bufo marinus; the receptor potential was recorded intracellularly from red rods, and [K+]o was measured in the photoreceptor layer with K+-specific microelectrodes. In support of the hypothesis, variations in stimulus irradiance or duration, or in retinal temperature, produced qualitatively similar effects on both the receptor potential and the decrease in [K+]o. A mechanism for the relationship between the receptor potential and the decrease in [K+]o was suggested by Matsuura et al. (1978. Vision Res. 18:767-775). In the dark, the passive efflux of K+ out of the rod is balanced by an equal influx of K+ fromthe Na+/K+ pump. The light-evoked rod hyperpolarization is assumed to reduce the passive efflux, with little effect on the pump. Thus, the influx will exceed the efflux, and [K+]o will decrease. Consistent with this mechanism, the largest and most rapid decrease in [K+]o was measured adjacent to the rod inner segments, where the Na+/K+ pump is most likely located; in addition, inhibition of the pump with ouabain abolished the decrease in [K]o more rapidly than the rod hyperpolarization. Based upon this mechanism, Matsuura et al. (1978) developed a mathematical model: over a wide range of stimulus irradiance, this model successfully predicts the time-course of the decrease in [K+]o, given only the time-course of the rod hyperpolarization.  相似文献   

19.
Electromyograms of mammalian extraocular muscles were recorded by means of a coaxial electrode. Besides normal extracellular spike potentials (1-2 msec duration), monophasic waves (with a decline lasting up to 7 msec) were recorded. As to the interpretation of these potential changes in terms of a potential drop that is produced by local currents flowing from the resting region of a fibre towards the active region consideration is given to two cases. First, a propagated active region (spike potentials, at least diphasic) and second, a stationary active region (with resulting monophasic waves). In the EMGs spontaneous monophasic potentials recruit at a lower threshold than spike potentials; frequency changes were observed when head position was altered. The latter are interpreted as local depolarizations occurring at neuromuscular junctions of multiple innervated muscle fibres among those fibre types that compose extraocular muscles.  相似文献   

20.
Membrane potential responses of Paramecium caudatum to an application of K+-rich solution were examined to understand the mechanisms underlying K+-induced backward swimming. A wild-type cell impaled by a microelectrode produced action potentials followed by a sustained depolarization in response to an application of a K+-rich test solution. After termination of the application, a prolongation of the depolarization (depolarizing after-potential) took place. Behavioral mutants incapable of exhibiting K+-induced backward swimming did not show depolarizing afterpotentials. Upon short application of K+-rich solution, the timing and duration of the ciliary reversal of the wild-type cell coincided well with the K+-induced depolarization. The duration of the depolarizing afterpotential decreased as the duration of the application increased. The depolarizing afterpotential recovered slowly after it had been suppressed by a preceding application of the K+-rich solution. By injection of an outward current into the wild-type cell, the action potentials were evoked normally during the period when the K+-induced depolarizing afterpotential was suppressed. We concluded that the prolongation of the depolarizing membrane potential response following the application of the K+-rich solution represents the Ca2+ conductance responsible for the K+-induced backward swimming in P. caudatum and that the characteristics of the K+-induced Ca2+ conductance are distinct from those of the Ca2+ conductance responsible for the action potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号