首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 728 毫秒
1.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies.  相似文献   

2.
A. Micke 《Plant and Soil》1984,82(3):337-357
Summary Grain legumes are an important group of crop plants. They provide an essential source of protein food for many developing countries, but their production has gone down in favour of more profitable crops like cereals. Therefore, genetic improvement of grain legumes is urgently needed. The primary aim of grain legume breeding must be the increase of production through adaptation to more advanced cropping schemes and reduction of crop losses. Symbiotic nitrogen fixation as developed by natural evolution does not always seem to be compatible with the needed substantial increase in yield: It is not supplying sufficient nitrogen and supplementation by fertilizer is rather uneconomic. By genetic manipulation of the plant's regulatory system nitrogen fixation may become more effective and tolerant to high soil nitrogen levels. Through a number of mutation breeding projects in different countries involving all important grain legume species it has been proven that mutation induction is a good tool for supplementing the genetic variation available from natural evolution and from selection by man. High-yielding cultivars have been developed from induced mutants, which eventually also possess a more efficient nitrogen fixation capacity.  相似文献   

3.
Acetylene reduction assay was used to measure the nitrogenase activity of white clover genotypes in pots and of grass/clover swards in situ. Much of the variation in nitrogenase activity of single genotypes and hybrid populations was associated with plant dry weight. After adjustment for plant dry weight it was concluded that there was limited scope for selection for increased nitrogenase activity. In plant breeding this technique would seem to have greatest application in the selection for continued nitrogen fixation activity in the presence of inhibitory factors such as high levels of mineral nitrogen. The in situ studies revealed differences in nitrogenase activity of grass/clover swards based on contrasting cultivars of white clover. These differences were due to variation in clover density and also to variation in activity per unit clover dry weight. It was concluded that the variation in nitrogenase activity per unit dry weight reflected differences in growth pattern of the cultivars in the autumn when these assays were made. The in situ studies offer a means whereby the nitrogenase activity of cultivars and selected families can be monitored under varying levels of mineral nitrogen and other husbandry treatments without disruption of the sward.  相似文献   

4.
Summary This paper reviews (i) basic studies on the genetics of symbiosis in red clover (a self-sterile species) and subterranean clover (cleistogamous) and (ii) work on selection and plant breeding to increase nitrogen fixation in these hosts.Symbiotic effectiveness in red clover is influenced by many major and minor genes. The highly effective phenotype is inherited in a complex manner associated with early nodulation and the formation of large amounts of persistent bacteroid-containing tissue. Lines bred to fix more nitrogen with one strain ofRhizobium trifolii do so with most but not all other strains examined. They also show slightly increased vigour when grown on nitrate. The highly effective response is correlated with abundant nodulation and an early flowering habit, the evidence from breeding studies indicating that this correlation is not absolute. Normally effective and highly effective nodules have the same specific nitrogenase activities. The expression of the highly effective response is relatively little affected by environmental factors (temperature, light intensity, day length, supplementary carbon-di-oxide). Inbreeding substantially degrades the symbiotic response.Heterosis is shown in crosses between cultivars of subterranean clover but otherwise selection to increase effectiveness in this host was unsuccessful.The relevance of these results (and their physiological aspects) for the improvement of grain legumes is discussed.  相似文献   

5.
Field experiments were performed in Austria, Brazil, Chile, Colombia, Guatemala, Mexico and Peru as part of an FAO/IAEA Co-ordinated Research Programme to investigate the nitrogen fixing potential of cultivars and breeding lines of common bean (Phaseolus vulgaris L.). Each experiment included approximately 20 bean genotypes which were compared using the 15N isotope dilution method. Great differences in nitrogen fixation were observed between and within experiments, with average values of 35% N derived from atmosphere (% Ndfa) and highest values of 70% Ndfa being observed. These values which were larger than had been reported previously for common bean, were observed only when environmental factors were favorable. Therefore, common bean lines are available, which can support high biological nitrogen fixation. These can be used either directly as cultivars for production or in breeding programmes to enhance nitrogen fixation in other cultivars.  相似文献   

6.
O'Hara  G. W.  Hartzook  A.  Bell  R. W.  Loneragan  J. F. 《Plant and Soil》1993,155(1):333-336
The effects of Bradyrhizobium (strains NC92 and TAL1000) and Fe supply on nodulation and nitrogen fixation of two peanut (Arachis hypogaea L.) cultivars (cv. Tainan 9 (Fe inefficient) and cv. 71-234 (Fe efficient)) grown under Fe deficient conditions (imposed by adding 40% CaCO3 to a ferruginous soil) were examined in a glasshouse experiment. When inoculated with TAL1000 without Fe, both cultivars had low shoot N concentration, very low nodule numbers and weight and no measurable acetylene reduction activity per plant. Inoculation with NC92 without Fe increased all these parameters substantially; addition of Fe with NC92 had no further effect on N concentration but doubled nodule number, weight and acetylene reduction activity per plant. Addition of Fe with TAL1000 increased all parameters to the same level as Fe+NC92, indicating that the poorer nodulation and N2 fixation of TAL1000 in the absence of Fe, resulted from a poorer ability in getting its Fe supply from the alkaline soil. The nodules from all treatments with measurable activity had the same specific acetylene reduction activity suggesting that Fe deficiency limited nodule development.The results support previous suggestions that Bradyrhizobium strains differ greatly in their ability to obtain Fe from soils and that selection of Fe efficient strains could complement plant breeding in the selection of legume crops for Fe deficient soils.  相似文献   

7.
Common bean (Phaseolus vulgaris L.), which is an important food crop in the Americas, Africa and Asia, usually is thought to fix only small amounts of atmospheric nitrogen. However, field data indicate considerable genetic variability for total N2 fixation and traits associated with fixation. Studies have shown that selection to increase N2 fixation will be successful if: (1) discriminating traits (selection criteria) are measured precisely, (2) variability in germplasm is heritable, (3) selected parents are also agronomically suitable, (4) units of selection facilitate quantification of selection criteria, and (5) a breeding procedure that allows maximum genetic gain for N2 fixation and recombination with essential agronomic traits is chosen. Breeding lines capable of fixing enough atmospheric N2 to support seed yields of 1000–2000 kg ha–1 have been identified and new cultivars with high N2 fixation potential are being released.  相似文献   

8.
Eighty soybean cultivars were assessed for their potential for nodulation and nitrogen fixation with indigenous rhizobia in a Nigerian soil. Seventy-six days after planting (DAP) 87%, 3% and 10% of the soybean cultivars had from 0 to 30, 31 to 60 and over 61 nodules/plant, respectively. Only 8% had a nodule dry weight of 600 to 1100 mg/plant. At 84 DAP the proportion of nitrogen derived from the atmosphere (Ndfa) ranged from 0 to 65% 16% of the cultivars derived 51 to 65% of their N2 from the atmosphere. The diversity of soybean germplasm and the variation in nodulation and N2 fixation permitted the selection of the five best cultivars in terms of their compatibility with indigenous rhizobia, % Ndfa and the amount of N2 which they fixed.  相似文献   

9.
Many characteristics make Miscanthus × giganteus an appealing bioenergy feedstock in temperate North America, but the degree to which this plant species interacts with nitrogen‐fixing bacteria remains understudied. Demonstration of associative nitrogen fixation in Miscanthus would support management with minimal fertilizer inputs that is demanded of long‐term biofuel sustainability. As a first step, we investigate the role of biological nitrogen fixation in nutrition of immature Miscanthus and temporal dynamics of plant‐associated nitrogen fixers. The contribution of biological nitrogen fixation to plant nitrogen acquisition in first year Miscanthus × giganteus was estimated using a yield‐dependent 15N isotope dilution model. Temporal changes in plant‐associated diazotroph relative abundance and community composition were analyzed with quantitative PCR and terminal restriction fragment length polymorphism of the nifH gene in rhizome and rhizosphere DNA extracts. We estimate 16% of new plant nitrogen was derived by nitrogen fixation during the growing season, despite non‐limiting soil nitrogen. Diazotroph communities from rhizome and rhizosphere changed with plant development and endophytic nitrogen fixers had significantly higher relative abundance and altered community composition at sampling dates in July and August. This study provides evidence for a small, but measurable, benefit of associative nitrogen fixation to first year Miscanthus × giganteus that underscores the potential and need for selection of breeding lines that maximize this trait.  相似文献   

10.
Plant breeders have played an essential role in improving agricultural crops, and their efforts will be critical to meet the increasing demand for cellulosic bioenergy feedstocks. However, a major concern is the potential development of novel invasive species that result from breeders' efforts to improve agronomic traits in a crop. We use reed canarygrass as a case study to evaluate the potential of plant breeding to give rise to invasive species. Reed canarygrass has been improved by breeders for use as a forage crop, but it is unclear whether breeding efforts have given rise to more vigorous populations of the species. We evaluated cultivars, European wild, and North American invader populations in upland and wetland environments to identify differences in vigor between the groups of populations. While cultivars were among the most vigorous populations in an agricultural environment (upland soils with nitrogen addition), there were no differences in above- or below-ground production between any populations in wetland environments. These results suggest that breeding has only marginally increased vigor in upland environments and that these gains are not maintained in wetland environments. Breeding focuses on selection for improvements of a specific target population of environments, and stability across a wide range of environments has proved elusive for even the most intensively bred crops. We conclude that breeding efforts are not responsible for wetland invasion by reed canarygrass and offer guidelines that will help reduce the possibility of breeding programs releasing cultivars that will become invasive.  相似文献   

11.
Two field experiments were performed to evaluate the nitrogen fixation potential of twenty common bean cultivars and breeding lines during summer and winter seasons of 1986 and 1988, respectively. The 15N isotope dilution method was used to quantify N2 fixation. The cultivars and breeding lines were variable in terms of their N2 fixation. The cv. Caballero was very efficient, with more than 50% N derived from the atmosphere and 60–80 kg N ha–1 fixed in both seasons. Other cultivars were less efficient, since the poorest ones derived less than 30% of their nitrogen from the atmosphere and fixed less than 20 kg N ha–1. After additional testing the best cultivars may be used directly by the farmers for cultivation. The experiments have provided information about which genotypes may be used to breed for enhanced fixation in common bean.  相似文献   

12.
Nitrogen (N) bioavailability is a primary limiting nutrient for crop and feedstock productivity. Associative nitrogen fixation (ANF) by diazotrophic bacteria in root‐zone soil microbial communities have been shown to provide significant amounts of N to some tropical grasses, but this potential in switchgrass, a warm‐season, temperate, US native, perennial tallgrass has not been widely studied. ‘Alamo’ and ‘Dacotah’ are cultivars of switchgrass, adapted to the southern and northern regions of the United States, respectively, and offer an opportunity to better describe this plant–bacterial association. The nitrogenase enzyme activity, microbial communities, and amino acid profiles in the root‐zones of the two ecotypes were studied at three different plant growth stages. Differences in the nitrogenase enzyme activity and free soluble amino acid profiles indicated the potential for greater nitrogen fixation in the high productivity Alamo compared with the lower productivity Dacotah. Changes in the amino acid profiles and microbial community structure (rRNA genes) of the root‐zone suggest different plant–bacterial interactions can help to explain differences in nitrogenase activity. PICRUSt analysis revealed functional differences, especially nitrogen metabolism, that supported ecotype differences in root‐zone nitrogenase enzyme activity. It is thought that the greater productivity of Alamo increased the belowground flow of carbon into roots and root‐zone habitats, which in turn support the high energy demands needed to support nitrogen fixation. Further research is thus needed to understand plant ecotype and cultivar trait differences that can be used to breed or genetically modify crop plants to support root‐zone associations with diazotrophs.  相似文献   

13.
Symbiotic nitrogen fixation is highly sensitive to drought, which results in decreased N accumulation and yield of legume crops. The effects of drought stress on N2 fixation usually have been perceived as a consequence of straightforward physiological responses acting on nitrogenase activity and involving exclusively one of three mechanisms: carbon shortage, oxygen limitation, or feedback regulation by nitrogen accumulation. The sensitivity of the nodule water economy to the volumetric flow rate of the phloem into the nodule offers a common framework to understand each of these mechanism. As these processes are sensitive to volumetric phloem flow into the nodules, variations in phloem flow as a result of changes in turgor pressure in the leaves are likely to cause rapid changes in nodule activity. This could explain the special sensitivity of N2 fixation to drying soils. It seems likely that N feedback may be especially important in explaining the response mechanism in nodules. A number of studies have indicated that a nitrogenous signal(s), associated with N accumulation in the shoot and nodule, exists in legume plants so that N2 fixation is inhibited early in soil drying. The existence of genetic variation in N2 fixation response to water deficits among legume cultivars opens the possibility for enhancing N2 fixation tolerance to drought through selection and breeding.  相似文献   

14.
Vegetative propagules of adult plants of white clover grown in agar culture show a better agreement with the performance of adult plants grown in soil than that previously reported of nodulated seedlings. This suggests that, whilst results obtained from the inoculation of seedlings can only be extrapolated to other situations with great caution, laboratory techniques which allow nitrogen fixation assessments to be made on adult plants may be useful in predicting performance under more natural conditions. The growth of vegetative propagules of mature plants dependent on rhizo-bium fixed nitrogen was also compared with propagules receiving abundant inorganic nitrogen. In agar culture there were no differences in yield between nitrogen sources, indicating that the symbiotic associations could fix sufficient nitrogen for growth under these relatively restrictive conditions. In soil, however, only the slower genotypes came near to providing sufficient nitrogen from symbiosis to sustain their potential yield as measured from their growth with inorganic nitrogen. The more vigorous the genotype the greater was the short-fall in nitrogen supplied by the rhizobium association. Joint regression analysis showed that any apparent interactions between plant genotypes and the source of nitrogen was a function of the genotypes' potential growth rate. The importance of quantifying nitrogen fixation in relation to the growth potential of the host genotype is emphasized, and the need, in legume breeding programmes, for simultaneous selection of host and rhizobium is discussed.  相似文献   

15.
Summary The seasonal patterns of nodulation, acetylene reduction, nitrogen uptake and nitrogen fixation were studies for 11 pigeonpea cultivars belonging to different maturity groups grown on an Alfisol at ICRISAT Center, Patancheru, India. In all cultivars the nodule number and mass increased to a maximum around 60–80 days after sowing and then declined. The nodule number and mass of medium- and late-maturing cultivars was greater than that of early-maturing cultivars. The nitrogenase activity per plant increased to 60 days after sowing and declined thereafter, with little activity at 100 days when the crop was flowering. At later stages of plant growth nodules formed down to 90 cm below the soil surface but those at greater depth appeared less active than those near the surface. All the 11 cultivars continued to accumulate dry matter until 140 days, with most biomass production by the late-maturing cultivars (up to 11 t ha−1) and least by the early-maturing determinate cultivars (4 t ha−1). Total nitrogen uptake ranged from 69 to 134 kg ha−1. Nitrogen fixation by pigeonpea was estimated as the difference in total nitrogen uptake between pigeonpea and sorghum and could amount to 69 kg N ha−1 per season, or half the total nitrogen uptake. Fixation by pigeonpea increased with crop duration, but there were differences within each maturity group. The limitations of the methods used for estimating N2 fixation by pigeonpea are discussed. Submitted as J.A. No. 552 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

16.
We have investigated the response of two peanut cultivars (TEGUA and UTRE) with different growth habits and branching pattern structures to different nitrogen (N) sources, namely, N-fertilizer or N2 made available by symbiotic fixation, and analysed the pattern of nitrate reductase (NR) activity in these cultivars. Nitrate and amino acid contents were also examined under these growth conditions. In terms of nitrogen source, cv. TEGUA showed a better response to inoculation with Bradyrhizobium sp. SEMIA 6144 at 40 days after planting, while cv. UTRE responded better to N-fertilizer (5 mM KNO3). Both cultivars showed different patterns of NR activity in the analyzed plant organs (leaves, roots, and nodules), which were dependent on the N source. When nitrogen became available to the plant through symbiotic N2 fixation, the patterns of NR activity distribution were different in the two cultivars, with cv. TEGUA showing a higher NR activity in the nodules than in the leaves and roots, and cv. UTRE showing no difference in terms of NR activity among organs. The nitrate and amino acid contents showed a similar trend between the two cultivars, with the highest nitrate content in the leaves of fertilized plants and the highest amino acid content in the nodules. The high nitrate content of the leaves of cv. UTRE indicated the better response of this cultivar to N-fertilizer.  相似文献   

17.
Several studies have analysed the effects of wheat breedingon dry matter accumulation and partitioning, but little hasbeen done to understand the effects on nutrient economies. Theobjective of this study was to identify the changes producedby wheat breeding in the economy of nitrogen and phosphorusunder field conditions. Two experiments were carried out withseven genotypes (including a commercial hybrid) representingdifferent eras of plant breeding. Wheat breeding has increased grain nitrogen and phosphorus yieldbut total absorbed nutrients have not shown any trend duringthis century. The main attribute closely related to the increasein grain nitrogen and phosphorus yields was their harvest indices.The higher nutrient partitioning in the newer cultivars wasassociated with lower grain nitrogen and phosphorus concentrationsin their grains. Therefore, there was a negative effect of geneticimprovement in grain nitrogen and phosphorus concentrations.The main cause for the decreased concentration of these nutrientsin the grains of the modern cultivars appeared to be a dilutionby an even more increased dry matter partitioning. It is suggestedthat future breeding should be aimed to select for higher nitrogenuptake as a way to increase the level of this nutrient in grain.Copyright1995, 1999 Academic Press Triticum aestivum L., wheat breeding, genetic improvement, nitrogen, phosphorus, wheat, grain nitrogen concentration, grain phosphorus concentration  相似文献   

18.
Summary Nitrogen fixation is generally considered to be a major parameter of productivity in soybean (Glycine max). The aim of the investigations reported here was to analyse the genetic behaviour of this trait in view of its possible use as an indirect criterion of selection for productivity. Divergent selection for nitrogen fixation rate was carried out on F2 populations obtained from crosses between high-yielding cultivars that are well adapted to French climatic conditions. The genetic component of nitrogen fixation and yield was isolated through the analysis of (1) the nitrogen fixation potentials of the genotypes under controlled conditions and (2) the field yields under favourable conditions. Divergent selection resulted in two groups of genotypes whose nitrogen fixation abilities are significantly different. The F6 filial progeny obtained by single seed descent from the two groups displayed significantly different abilities for nitrogen fixation and for field productivity. The gain achieved for the nitrogen fixation activity with respect to the mean value of the parents ranged from 20% to 33% for the positive selection, depending on the crosses. The occurrence of positive and significant correlations between the level of nitrogen fixation activity in F2 plants and N2 fixation or yield in the F6 generation corroborates the relatively high heritability of this trait and suggests its possible use as an indirect selection criterion for yield.  相似文献   

19.
Summary In most plant breeding programs, selection of the best commercially suitable cultivars for a target group of environments is based on information obtained from evaluation trials cultivated in a sample of environments. Information on the performance of cultivars collected in a sample of environments can only be approximate and, consequently, selection of the best cultivar involves choosing among cultivars that respond uncertainly in many environments. The agronomic and/or economic value of a cultivar across environments may be considered the general or overall utility of the cultivar. Data from a sample of environments therefore provides only an estimate of any cultivar's overall utility, with the overall goal of selection among all cultivars being the maximization of the expected utility. Within this frame-work, expected utility maximization, an approach to decision making that has been well developed in the disciplines of economics and statistics, can assist the plant breeder in making such decisions. This research was initiated (1) to determine how expected utility maximization might be used to develop indices that are useful for selecting broadly adapted plant cultivars, and (2) to determine how the breeder's preferences might affect choice of the best cultivar. The data used in this research were from USDA Regional Soybean Tests. The results indicated that expected utility maximization, which explicitly incorporates into the selection rule the plant breeder's preferences regarding stability, can be a useful aid in the selection of stable plant cultivars.  相似文献   

20.
Genetic analysis across a whole plant genome based on pedigree information offers considerable potential for enhancing genetic gain from plant breeding programs through quantitative trait loci (QTL) mapping and marker-assisted selection. Here, we report its application for graphically genotyping varieties used in Chinese japonica rice (Oryza sativa L.) pedigree breeding programs. We identified 34 important chromosomal regions from the founder parent that are under selection in the breeding programs, and by comparing donor genomic regions that are under selection with QTL locations of agronomic traits, we found that QTL clustered in important genomic regions, in accordance with association analyses of natural populations and other previous studies. The convergence of genomic regions under selection with QTL locations suggests that donor genomic regions harboring key genes/QTL for important agronomic traits have been selected by plant breeders since the 1950s from the founder rice plants. The results provide better understanding of the effects of selection in breeding programs on the traits of rice cultivars. They also provide potentially valuable information for enhancing rice breeding programs through screening candidate parents for targeted molecular markers, improving crop yield potential and identifying suitable genetic material for use in future breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号