首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lamellar inclusion bodies, apparent precursors for alveolar surfactant lining, have remarkably similar phospholipid composition to surfactant from alveolar lavage, but distinctly different from other fractions studied: mitochondria, microsomal fraction containing endoplasmic reticulum membranes, plasma membranes and nuclei. Surfactant contained (as % of total phospholipid phosphate): 75.5-77.0% lecithin, 11.0-11.2% phosphatidylglycerol, 4.2-4.6% phosphatidylethanolamine, 3.0-3.2% phosphatidylinositol, 1.5-1.7% bis-(monoacylglycerol) phosphate, 1.2-1.9% phosphatidylserine, and 0.7-1.5% sphingomyelin. Fatty acids of phosphatidylglycerol from lamellar bodies were similar to those from microsomes but different from those in mitochondria. Lung homogenate in continuous sucrose density gradient displayed two major activity peaks of phosphatidylglycerol synthesis: the heavier from mitochondria; the lighter from endoplasmic reticulum. Studies on mechanism of phosphatidylglycerol synthesis in vitro revealed (in these two fractions) CDP-diglyceride and sn-glycerol phosphate precursors to phosphatidylglycerol phosphate, that hydrolysed to phosphatidylglycerol. In microsomes disaturated CDP-diglycerides were 1.6-1.9 times more active substrates than in mitochondria, whereas CDP-diglycerides from egg lecithin were almost equally active. In contrast to lung mitochondria no cardiolipin synthesis was detected in microsomes. The highest specific activities for phosphatidate cytidyltransferase, CDP-diglyceride-inositol phosphatidyltransferase, choline phosphotransferase, and phosphatidylethanolamine methyltransferase were all found in microsomes. The present in vitro studies and additional evidence (M. Hallman and L. Gluck, (1975) Fed. Proc. 34, 274) support the hypothesis that de novo synthesis of surfactant lecithin phosphatidylinositol and phosphatidylglycerol takes place in the endoplasmic reticulum of alveolar cells.  相似文献   

2.
The subcellular site of phosphatidylglycerol (PG) formation for lung surfactant has not been convincingly clarified. To approach this problem we analysed the acyl species pattern of lung PG in mitochondria, microsomes and surfactant by h.p.l.c. separation of its 1,2-diacyl-3-naphthylurethane derivatives. Both mitochondrial and microsomal PG proved identical with surfactant PG, containing the major species 1-palmitoyl-2-oleoyl-PG and 1,2-dipalmitoyl-PG. The fatty acid composition of mitochondrial PG differs markedly from that of diphosphatidylglycerol. This may be taken as an indication that mitochondrial PG is synthesized on purpose to form surfactant, rather than being only the precursor of diphosphatidylglycerol. In vitro, sn-[U-14C]glycerol 3-phosphate incorporation into PG of mitochondria or microsomes occurs in the presence of CTP, ATP and CoA but independently of the supply of exogenous lipoidic precursors. Although the rate in vitro of autonomous PG synthesis, and the endogenous PG content, are higher in mitochondria than in microsomes, it is assumed that both subcellular fractions are involved in PG formation for surfactant.  相似文献   

3.
Proteolipid in bovine lung surfactant: its role in surfactant function   总被引:14,自引:0,他引:14  
The chemical and biophysical properties of the proteins in the lipid extracts of lung surfactant have not clearly been determined. These proteins were isolated from lung surfactant lipids by Sephadex LH-20 chromatography and purified with silicic acid chromatography followed by dialysis against organic solvents. The proteolipid thus obtained had a protein to phospholipid ratio of 3 to 1 (w/w). The proteolipid apoprotein had a nominal molecular weight of ca. 5 kDa. We evaluated the functional role of this proteolipid by combining it with proteolipid-depleted surfactant lipids or synthetic dipalmitoylphosphatidylcholine (DPPC) and then measuring with a pulsating bubble surfactometer. The proteolipid and DPPC recombinant reproduced the surface activity of natural lung surfactant. We conclude that this 5 kDa proteolipid apoprotein is a functionally important constituent of lung surfactant.  相似文献   

4.
Pulmonary surfactant in bronchoalveolar lavage fluid (BALF) and induced sputum from adults with stable asthma (n = 36) and healthy controls (n = 12) was analyzed for phospholipid and protein compositions and function. Asthmatic subjects were graded as mild, moderate, or severe. Phospholipid compositions of BALF and sputum from control subjects were similar and characteristic of surfactant. For asthmatic subjects, the proportion of dipalmitoyl phosphatidylcholine (16:0/16:0PC), the major phospholipid in surfactant, decreased in sputum (P < 0.05) but not in BALF. In BALF, mole percent 16:0/16:0PC correlated with surfactant function measured in a capillary surfactometer, and sputum mole percent 16:0/16:0PC correlated with lung function (forced expiratory volume in 1 s). Neither surfactant protein A nor total protein concentration in either BALF or sputum was altered in asthma. These results suggest altered phospholipid composition and function of airway (sputum) but not alveolar (BALF) surfactant in stable asthma. Such underlying surfactant dysfunction may predispose asthmatic subjects to further surfactant inhibition by proteins or aeroallergens in acute asthma episodes and contribute to airway closure in asthma. Consequently, administration of an appropriate therapeutic surfactant could provide clinical benefit in asthma.  相似文献   

5.
Altered function of pulmonary surfactant in fatty acid lung injury   总被引:1,自引:0,他引:1  
To determine whether acute fatty acid lung injury impairs pulmonary surfactant function, we studied anesthetized ventilated rabbits given oleic acid (55 mg/kg iv, n = 11) or an equivalent volume of saline (n = 8). Measurements of pulmonary mechanics indicated a decrease in dynamic compliance within 5 min of injury and a decrease in lung volume that was disproportionately large at low pressures, consistent with diminished surfactant activity in vivo. Bronchoalveolar lavage fluid obtained 1 h after injury had significantly increased erythrocytes and total leukocytes, largely polymorphonuclear cells. The phospholipid content and composition of the cell-free fraction had only minor changes from those of controls, but the protein content was increased 35-fold. Measurements of lavage surface activity in vitro showed an increase in average minimum surface tension from 1.3 +/- 0.4 (SE) dyn/cm in controls to 20.2 +/- 3.9 dyn/cm in injured animals. The alterations in static pressure-volume curves and decrease in lavage surface activity suggest a severe alteration of surfactant function in this form of lung injury that occurs despite the presence of normal amounts of surfactant phospholipids.  相似文献   

6.
1. This study was designed to monitor the changes in surfactant quantity and function in the 72 hr following 3-methylindole (3MI) infusion in goats. 2. 3MI, at 35 mg/kg body wt, caused an increase in surfactant phospholipid isolated from lamellar bodies and lavage fluid. 3. The function of surfactant isolated from lavage fluid was tested using the pulsating bubble surfactometer. The results indicated a serious impairment in the ability to lower surface tension in vitro. 4. Results suggested 3MI caused an impaired surfactant function rather than surfactant synthesis in response to epithelial damage.  相似文献   

7.
Relationships between lung function and surfactant function and composition were examined during the evolution of acute lung injury in guinea pigs. Lung mechanics and gas exchange were assessed 12, 24, or 48 h after exposure to nebulized lipopolysaccharide (LPS). Bronchoalveolar lavage (BAL) fluid was processed for phospholipid and protein contents and surfactant protein (SP) A and SP-B levels; surfactant function was measured by pulsating bubble surfactometry. Lung elastance, tissue resistance, and arterial-alveolar gradient were moderately elevated by 12 h after LPS exposure and continued to increase over the first 24 h but began to recover between 24 and 48 h. Similarly, the absolute amount of 30,000 g pelleted SP-A and SP-B, the phospholipid content of BAL fluid, and surfactant function declined over the first 24 h after exposure, with recovery between 24 and 48 h. BAL fluid total protein content increased steadily over the first 48 h after LPS nebulization. In this model of acute lung injury, the intra-alveolar repletion of surfactant components in early recovery led to improved surfactant function despite the presence of potentially inhibitory plasma proteins.  相似文献   

8.
A homologous series of chiral (R) ether-amide phosphonolipid analogs of naturally occurring (R) glycerophospholipids were synthesized and characterized for their interfacial behaviors. The phosphonolipids possess isoteric ether, amide, and phosphonate functions at positions corresponding to the sn-1, sn-2, and sn-3 ester functions, respectively, of naturally occurring glycerophospholipids. All compounds were synthesized with disaturated C16:0 alkyl/acyl moieties to give structural analogy with dipalmitoyl phosphatidylcholine (DPPC), the major glycerophospholipid component of lung surfactant. Further substitutions at the headgroup nitrogen were also used to generate differences in headgroup size and polarity in the synthetic compounds. The surface activity of the ether-amide phospholipids was investigated in terms of adsorption to the air-water interface, together with studies of dynamic respreading after monolayer collapse and surface tension lowering in dynamically compressed spread films and dispersions. Results showed that several ether-amide phosphonolipids had more rapid adsorption and improved dynamic respreading behavior compared to DPPC, plus the ability to lower surface tension into the range of less than 1 to 4 mN/m in spread films and in dispersions under dynamic conditions. In combination with a series of diether phosphonolipids synthetized in a companion study [1], these ether-amide compounds are useful in the development of molecular structure-surface activity correlates for lung surfactant-related materials, and should assist in investigating the specificity of interactions between phospholipids and other pulmonary biological molecules.  相似文献   

9.
The metabolism of phosphatidylglycerol and lysyl phosphatidylglycerol was studied in Staphylococcus aureus under four conditions: growing at pH 7.0 and 5.2, and not growing (resting) at pH 7.0 and 5.2. Measurements of the amounts of phosphatidylglycerol and lysyl phosphatidylglycerol, as well as labeling and pulsechase experiments, revealed that the phosphate group of the former and the lysyl group of the latter were in a state of active turnover. A marked decline in the cellular level of phosphatidylglycerol observed when cells were resting at pH 5.2 was found to be caused by both a decrease in synthesis and an increase in catabolism. The level of lysyl phosphatidylglycerol was found to be relatively constant under the four incubation conditions, although the lysyl moiety was in a state of turnover. Experiments designed to test the possible role of lysyl phosphatidylglycerol as a lysyl group donor in biosynthetic processes or in lysine transport were negative; no evidence to support the hypothesis that lysyl phosphatidylglycerol serves as an intermediate was obtained.  相似文献   

10.
The studies reported here used fluorescence microscopy and Brewster angle microscopy to test the classical model of how pulmonary surfactant forms films that are metastable at high surface pressures in the lungs. The model predicts that the functional film is liquid-condensed (LC) and greatly enriched in dipalmitoyl phosphatidylcholine (DPPC). Both microscopic methods show that, in monolayers containing the complete set of phospholipids from calf surfactant, an expanded phase persists in coexistence with condensed domains at surface pressures approaching 70 mN/m. Constituents collapsed from the interface above 45 mN/m, but the relative area of the two phases changed little, and the LC phase never occupied more than 30% of the interface. Calculations based on these findings and on isotherms obtained on the continuous interface of a captive bubble estimated that collapse of other constituents increased the mol fraction of DPPC to no higher than 0.37. We conclude that monolayers containing the complete set of phospholipids achieve high surface pressures without forming a homogeneous LC film and with a mixed composition that falls far short of the nearly pure DPPC predicted previously. These findings contradict the classical model.  相似文献   

11.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

12.

Background

In a cross-sectional analysis of cystic fibrosis (CF) patients with mild lung disease, reduced surfactant activity was correlated to increased neutrophilic airway inflammation, but not to lung function. So far, longitudinal measurements of surfactant function in CF patients are lacking and it remains unclear how these alterations relate to the progression of airway inflammation as well as decline in pulmonary function over time.

Methods

As part of the BEAT trial, a longitudinal study to assess the course of airway inflammation in CF, we studied lung function, surfactant function and endobronchial inflammation using bronchoalveolar lavage fluid from 20 CF patients with normal pulmonary function (median FEV1 94% of predicted) at three times over a three year period.

Results

There was a progressive loss of surfactant function, assessed as minimal surface tension. The decline in surfactant function was negatively correlated to an increase in neutrophilic inflammation and a decrease in lung function, assessed by FEV1, MEF75/25%VC, and MEF25%VC. The concentrations of the surfactant specific proteins A, C and D did not change, whereas SP-B increased during this time period.

Conclusion

Our findings suggest a link between loss of surfactant function driven by progressive airway inflammation and loss of small airway function in CF patients with limited lung disease.  相似文献   

13.
14.
15.
Surfactant proteolipid (SP-B) is one of several hydrophobic peptides detected in organic extracts of pulmonary surfactant and associated with the dramatic surface-active properties of surfactant phospholipids. In the present study human SP-B was identified as a protein with a relative molecular weight (Mr) of 7,500-8,000 under reducing conditions; protein of Mr 18,000 was detected under nonreducing conditions by immunoblot analysis of organic extracts of bovine and human surfactant utilizing an antiserum directed against a 60-amino acid synthetic SP-B peptide. This peptide antiserum was subsequently used to identify SP-B in explant cultures of 18- to 23-wk gestation human fetal lung. Immunoprecipitation of explants labeled with [35S]methionine after 48 h of culture identified proteins of Mr 40,000-42,000, 25,000, and 18,000 after electrophoresis under nonreducing conditions. The Mr 18,000 form was reduced to Mr 7,500-8,000 in the presence of beta-mercaptoethanol. These molecular forms likely represent the SP-B precursor protein, a proteolytic intermediate, and the mature SP-B peptide, respectively. Immunocytochemistry with the peptide antiserum localized SPL(Phe) in granular inclusions in the apical region of type II-like epithelial cells, a pattern of staining similar to that observed for the major surfactant-associated protein of Mr 26,000-38,000 (SP-A). SP-B is a novel pulmonary surfactant-associated protein that is synthesized by the human alveolar type II epithelial cell as an Mr 40,000-42,000 precursor that is subsequently proteolytically processed to Mr 7,500-8,000.  相似文献   

16.
The present study characterizes the dynamic interfacial properties of calf lung surfactant (CLS) and samples reconstituted in a stepwise fashion from phospholipid (PL), hydrophobic apoprotein (HA), surfactant apoprotein A (SP-A), and neutral lipid fractions. Dipalmitoylphosphatidylcholine (DPPC), the major PL component of surfactant, was examined for comparison. Surface tension was measured over a range of oscillation frequencies (1-100 cycles/min) and bulk phase concentrations (0.01-1 mg/ml) by using a pulsating bubble surfactometer. Distinct differences in behavior were seen between samples. These differences were interpreted by using a previously validated model of surfactant adsorption kinetics that describes function in terms of 1) adsorption rate coefficient (k1), 2) desorption rate coefficient (k2), 3) minimum equilibrium surface tension (gamma*), 4) minimum surface tension at film collapse (gammamin), and 5) change in surface tension with interfacial area for gamma < gamma* (m2). Results show that DPPC and PL have k1 and k2 values several orders of magnitude lower than CLS. PL had a gammamin of 19-20 dyn/cm, significantly greater than CLS (nearly zero). Addition of the HA to PL restored dynamic interfacial behavior to nearly that of CLS. However, m2 remained at a reduced level. Addition of the SP-A to PL + HA restored m2 to a level similar to that of CLS. No further improvement in function occurred with the addition of the neutral lipid. These results support prior studies that show addition of HA to the PL markedly increases adsorption and film stability. However, SP-A is required to completely normalize dynamic behavior.  相似文献   

17.
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C eliminate squeeze-out of POPG from mixed DPPG/POPG monolayers by inducing a two- to three-dimensional transformation of the fluid-phase fraction of the monolayer. SP-B induces a reversible folding transition at monolayer collapse, allowing all components of surfactant to remain at the interface during respreading. The folds remain attached to the monolayer, are identical in composition and morphology to the unfolded monolayer, and are reincorporated reversibly into the monolayer upon expansion. In the absence of SP-B or SP-C, the unsaturated lipids are irreversibly lost at high surface pressures. These morphological transitions are identical to those in other lipid mixtures and hence appear to be independent of the detailed lipid composition of the monolayer. Instead they depend on the more general phenomena of coexistence between a liquid-expanded and liquid-condensed phase. These three-dimensional monolayer transitions reconcile how lung surfactant can achieve both low surface tensions upon compression and rapid respreading upon expansion and may have important implications toward the optimal design of replacement surfactants. The overlap of function between SP-B and SP-C helps explain why replacement surfactants lacking in one or the other proteins often have beneficial effects.  相似文献   

18.
We have previously developed an adsorption-limited model to describe the exchange of lung surfactant and its fractions to and from an air-liquid interface in oscillatory surfactometers. Here we extend this model to allow for diffusion in the liquid phase. Use of the model in conjunction with experimental data in the literature shows that diffusion-limited transport i.s important for characterizing the transient period from the start of oscillations to the achievement of steady-state conditions. Matching previous data shows that upon high levels of film compression, large changes occur in adsorption rate, desorption rate, and diffusion constant, consistent with what one might expect if the subsurface region was greatly enriched in DPPC. Collapse of the surfactant film that occurs during compression leads to a .significant elevation of surfactant concentration immediately heneath the interface, consistent with the subsurface depot of surfactant that has heen postulated by other investigators. Modeling studies also uncovered a phenomenon of surfactant behavior in which the interfacial tension remains constant at its minimum equilibrium value while the film is compressed, hut without collapse of the film. The phenomenon was due to desorption of surfactant from the interface and termed "pseudo-film collapse.' The new model also gave improved agreement with steady-state oscillatory cycling in a pulsating bubble surfactometer.  相似文献   

19.
1. Radioactively labelled pulmonary surfactant was prepared in an isolated perfused lung system provided with [14C]hexadecanoate. 2. After intratracheal administration of pulmonary surfactant radioactively labelled components were rapidly distributed into different lung fractions, including macrophages (free cells), but most of the radioactive label was accumulated by the lung tissue. 3. Alveolar macrophages, maintained in a variety of culture media in the presence and absence of mineral particles, incorporated a low percentage (11%) of radioactively labelled components when incubated with the surfactant, although evolution of labelled CO2 (6% of the original total activity) suggested that some breakdown of the components had taken place. 4. In similar cultures little intracellular accumulation or extracellular release of non-esterified fatty acids was demonstrated, indicating minimal catabolism of the high-molecular-weight lipid components of surfactant (particularly phosphatidylcholine). 5. However, experiments in vitro designed to simulate the lysosomal degradation of endocytosed surfactant indicated that the macrophage had enzymes capable of releasing non-esterified fatty acids, particularly hexadecanoate, from the lipoprotein complex. 6. It is argued that lung cells, other than alveolar macrophages, may also have a role in surfactant turnover.  相似文献   

20.
This report describes a successful attempt to reassemble, in vitro, two fractions obtained from bovine lung surfactant lipoprotein. An apoprotein isolated by gel filtration in the presence of sodium deoxycholate was recombined with lipid extracts of the surfactant, in a highly alkaline buffer (pH 10) containing 10 mM sodium deoxycholate. Sonication, dilution 1 to 10, dialysis, and washing by means of centrifugation were used to produce a lipid-protein complex. Centrifugation in a continuous sucrose density gradient revealed that this material had a density of 1.081 gm/ml and a phospholipid/protein ratio respectively almost the same as those of the original lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号