首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydantoin racemase that catalyzed the racemization of 5-benzyl-hydantoin was detected in a cell-free extract of Microbacterium liquefaciens AJ 3912, a bacterial strain known to produce L-amino acids from their corresponding DL-5-substituted-hydantoins. This hydantoin racemase was purified 658-fold to electrophoretic homogeneity by serial chromatography. The N-terminal amino acid sequence of the enzyme showed homology with known hydantoin racemases from other microorganisms. The apparent molecular mass of the purified enzyme was 27 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 117 kDa on gel-filtration in the purification conditions, indicating a homotetrameric structure. The purified enzyme exhibited optimal activity at pH 8.2 and 55 degrees C, and showed a chiral preference for L-5-benzyl- rather than D-5-benzyl-hydantoin.  相似文献   

2.
A reaction system was developed for the production of D-amino acids from D,L-5-monosubstituted hydantoins with a very slow rate of spontaneous racemization. For this purpose the D-hydantoinase and D-carbamoylase from Agrobacterium radiobacter NRRL B11291 were cloned in separate plasmids and expressed in Escherichia coli. The third enzyme, hydantoin racemase, was cloned from Agrobacterium tumefaciens C58. The hydantoin racemase amino acid sequence was significantly similar to those previously described. A reaction system consisting of recombinant Escherichia coli whole cell biocatalysts containing separately expressed D-hydantoinase, D-carbamoylase, and hydantoin recemase showed high substrate specificity and was effective toward both aliphatic and aromatic D,L-5-monosubstituted hydantoins. After optimizing reaction conditions (pH 8 and 50 degrees C), 100% conversion of D,L-5-(2-methylthioethyl)-hydantoin (15 mM) into D-methionine was obtained in 30 min.  相似文献   

3.
A novel hydantoin racemase gene of Agrobacterium tumefaciens C58 (AthyuA2) has been cloned and expressed in Escherichia coli BL21. The recombinant protein was purified in a one-step procedure and showed an apparent molecular mass of 27000 Da in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of approximately 100000 Da, suggesting that the native enzyme is a tetramer. The optimum pH and temperature for hydantoin racemase activity were 7.5 and 55 degrees C, respectively, with L-5-ethylhydantoin as substrate. Enzyme activity was strongly inhibited by Cu(2+) and Hg(2+). No effect on enzyme activity was detected with any other divalent cations, EDTA or DTT, suggesting that it is not a metalloenzyme. Kinetic studies showed the preference of the enzyme for hydantoins with short rather than long aliphatic side chains or hydantoins with aromatic rings.  相似文献   

4.
In Arthrobacter aurescens DSM 3747 three enzymes are involved in the complete conversion of slowly racemizing 5'-monosubstituted D,L-hydantoins to L-amino acids, a stereoselective hydantoinase, a stereospecific L-N-carbamoylase and a hydantoin racemase. The gene encoding the hydantoin racemase, designated hyuA, was identified upstream of the previously described L-N-carbamoylase gene in the plasmid pAW16 containing genomic DNA of A. aurescens. The gene hyuA which encodes a polypeptide of 25.1 kDa, was expressed in Escherichia coli and the recombinant protein purified to homogeneity and further characterized. The optimal condition for racemase activity were pH 8.5 and 55 degrees C with L-5-benzylhydantoin as substrate. The enzyme was completely inhibited by HgCL2 and iodoacetamide and stimulated by addition of dithiothreitol. No effect on enzyme activity was seen with EDTA. The enzyme showed preference for hydantoins with arylalkyl side chains. Kinetic studies revealed substrate inhibition towards the aliphatic substrate L-5-methylthioethylhydantoin. Enzymatic racemization of D-5-indolylmethylenehydantoin in D2O and NMR analysis showed that the hydrogen at the chiral center of the hydantoin is exchanged against solvent deuterium during the racemization.  相似文献   

5.
Using directed evolution, we have improved the hydantoinase process for production of L-methionine (L-met) in Escherichia coli. This was accomplished by inverting the enantioselectivity and increasing the total activity of a key enzyme in a whole-cell catalyst. The selectivity of all known hydantoinases for D-5-(2-methylthioethyl)hydantoin (D-MTEH) over the L-enantiomer leads to the accumulation of intermediates and reduced productivity for the L-amino acid. We used random mutagenesis, saturation mutagenesis, and screening to convert the D-selective hydantoinase from Arthrobacter sp. DSM 9771 into an L-selective enzyme and increased its total activity fivefold. Whole E. coli cells expressing the evolved L-hydantoinase, an L-N-carbamoylase, and a hydantoin racemase produced 91 mM L-met from 100 mM D,L-MTEH in less than 2 h. The improved hydantoinase increased productivity fivefold for >90% conversion of the substrate. The accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to cells with the wild-type pathway. Highly D-selective hydantoinase mutants were also discovered. Enantioselective enzymes rapidly optimized by directed evolution and introduced into multienzyme pathways may lead to improved whole-cell catalysts for efficient production of chiral compounds.  相似文献   

6.
Hydantoin racemase enzyme together with a stereoselective hydantoinase and a stereospecific D-carbamoylase guarantee the total conversion from D,L-5-monosubstituted hydantoins with a low velocity of racemization to optically pure D-amino acids. In this work we have cloned and expressed the hydantoin racemase gene from two strains of Agrobacterium tumefaciens, C58 and LBA4404, in Escherichia coli BL21. The recombinant protein was purified in a one-step procedure by using immobilized cobalt affinity chromatography and showed an apparent molecular mass of 32,000 Da in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 100,000 Da, suggesting that the native enzyme is a tetramer. The optimal conditions for hydantoin racemase activity were pH 7.5 and 55 degrees C with L-5-ethylhydantoin as substrate. Enzyme activity was slightly affected by the addition of Ni(2+) and Co(2+) and strongly inhibited by Cu(2+) and Hg(2+). No effect on enzyme activity was detected with Mn(2+), EDTA, or DTT. Kinetic studies showed the preference of the enzyme for hydantoins with short rather than long aliphatic side chains or hydantoins with aromatic rings.  相似文献   

7.
AIMS: A microorganism with the ability to release methionine from D,L-(2-methylthioethyl) hydantoin (strain 245) was isolated from soil. The aim of this study was the identification of the strain and the adjustment of the conditions of growth and of the enzymatic reaction, in order to achieve high specific activities of bioconversion of the hydantoin. METHODS AND RESULTS: Strain 245 was identified as Ochrobactrum anthropi. The strain grew at alkaline pH (up to 10.0) and its hydantoinase activity was found to be inducible by the substrate D,L-(2-methylthioethyl) hydantoin. The enzyme is also alkalostable, with a pH optimum of 9.0. Under these conditions, hydantoinase activity was significantly enhanced and its half life prolonged when 200 mmol l-1 ammonium and phosphate were added. The addition of Ca2+, Na+, Cu2+, Co2+, Mg2+, Zn2+ or Fe3+ (0.5 mmol l-1) to the reaction mixture increased the hydantoinase activity of strain 245 up to tenfold after 24 h of incubation, compared with unamended controls. CONCLUSION: The adequate adjustment of some environmental parameters (pH, addition of inducer, presence of ammonium, phosphate, heavy metals and other ions) can considerably increase the D, L-hydantoinase activity of strain 245. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings reported here set up the initial conditions for a further application of strain 245 in the production of methionine from hydantoine.  相似文献   

8.
Alanine racemase [EC 5.1.1.1], which catalyzes the interconversion between D- and L-alanine, was purified to homogeneity from the muscle of black tiger prawn Penaeus monodon. The isolated enzyme had a molecular mass of 44 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 90 kDa on gel filtration, indicating a dimeric nature of the enzyme. The enzyme was highly specific to D- and L-alanine and did not catalyze the racemization of other amino acids. K(m) values toward both D- and L-alanine were almost equal and considerably high compared with those of bacterial enzymes. The purified enzyme retained its activity in the absence of pyridoxal 5'-phosphate as a cofactor but carbonyl reagents inhibited the activity, suggesting the tightly binding of the cofactor to the enzyme protein. Several partial amino acid sequences of peptide fragments of the purified enzyme showed positive homologies from 52 to 76% with bacterial counterparts and a catalytic tyrosine residue of the bacterial enzyme was also retained in the prawn one, indicating alanine racemase gene is well conserved from bacteria to invertebrates.  相似文献   

9.
A bacterial strain, NS671, which converts DL-5-(2-methylthioethyl)hydantoin stereospecifically to L-methionine, was isolated from soil and was classified into the genus Pseudomonas. With growing cells of Pseudomonas sp. strain NS671, DL-5-(2-methylthioethyl)hydantoin was effectively converted to L-methionine. Under adequate conditions, 34g of L-methionine per liter was produced with a molar yield of 93% from DL-5-(2-methylthioethyl)hydantoin added successively. In addition to L-methionine, other amino acids such as L-valine, L-leucine, L-isoleucine, and L-phenylalanine were also produced from the corresponding 5- substituted hydantoins, but these L-amino acids produced were partially consumed by strain NS671. The hydantoinase, by which 5-substituted hydantoin rings are opened, was ATP-dependent. The N-carbamylamino acid amidohydrolase was found to be strictly L-specific, and its activity was inhibited by high concentration of ATP.  相似文献   

10.
A brackish-water mollusc, Corbicula japonica, uses large quantities of D- and L-alanine as intracellular osmotically active solutes, osmolytes, for regulation of intracellular osmolarity. We purified alanine racemase from the mantle of C. japonica to characterize its enzymological properties. The molecular masses of the enzyme were estimated to be 41 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 140 kDa by gel filtration on high-performance liquid chromatography, suggesting the trimeric or tetrameric nature of the enzyme. Neither dialysis nor chromatographic procedures in the absence of pyridoxal 5'-phosphate led to loss of enzyme activity, although carbonyl reagents, hydroxylamine and phenylhydrazine, inhibited the activity. These results suggest that alanine racemase of the animal may bind pyridoxal 5'-phosphate tightly as a cofactor. Kinetic experiments using the partially purified enzyme revealed that alanine was the sole substrate among 17 kinds of L-amino acids tested. The Lineweaver-Burk plot for L-alanine as substrate resulted in Km value of 22.6 mM, and the value for D-alanine was 9.2 mM. Together with the previous evidence that D- and L-alanine levels of this animal change with the external salinity maintaining the D-/L-alanine ratio at unity, the present results seem to indicate that the physiological role of alanine racemase in this animal is to supply D-alanine as a main intracellular osmolyte. J. Exp. Zool. 289:1-9, 2001.  相似文献   

11.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

12.
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.  相似文献   

13.
A novel alpha-glucosidase with an apparent subunit mass of 59 +/- 0. 5 kDa was purified from protein extracts of Rhizobium sp. strain USDA 4280, a nodulating strain of black locust (Robinia pseudoacacia L), and characterized. After purification to homogeneity (475-fold; yield, 18%) by ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic chromatography, dye chromatography, and gel filtration, this enzyme had a pI of 4.75 +/- 0.05. The enzyme activity was optimal at pH 6.0 to 6.5 and 35 degrees C. The activity increased in the presence of NH4+ and K+ ions but was inhibited by Cu2+, Ag+, Hg+, and Fe2+ ions and by various phenyl, phenol, and flavonoid derivatives. Native enzyme activity was revealed by native gel electrophoresis and isoelectrofocusing-polyacrylamide gel electrophoresis with fluorescence detection in which 4-methylumbelliferyl alpha-glucoside was the fluorogenic substrate. The enzyme was more active with alpha-glucosides substituted with aromatic aglycones than with oligosaccharides. This alpha-glucosidase exhibited Michaelis-Menten kinetics with 4-methylumbelliferyl alpha-D-glucopyranoside (Km, 0.141 microM; Vmax, 6.79 micromol min-1 mg-1) and with p-nitrophenyl alpha-D-glucopyranoside (Km, 0.037 microM; Vmax, 2.92 micromol min-1 mg-1). Maltose, trehalose, and sucrose were also hydrolyzed by this enzyme.  相似文献   

14.
Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2.  相似文献   

15.
Pyrobaculum islandicum is an anaerobic hyperthermophilic archaeon that is most active at 100 degrees C. A pyridoxal 5'-phosphate-dependent serine racemase called Srr was purified from the organism. The corresponding srr gene was cloned, and recombinant Srr was purified from Escherichia coli. It showed the highest racemase activity toward L-serine, followed by L-threonine, D-serine, and D-threonine. Like rodent and plant serine racemases, Srr is bifunctional, showing high L-serine/L-threonine dehydratase activity. The sequence of Srr is 87% similar to that of Pyrobaculum aerophilum IlvA (a putative threonine dehydratase) but less than 32% similar to any other serine racemases and threonine dehydratases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analyses revealed that Srr is a homotrimer of a 44,000-molecular-weight subunit. Both racemase and dehydratase activities were highest at 95 degrees C, while racemization and dehydration were maximum at pH 8.2 and 7.8, respectively. Unlike other, related Ilv enzymes, Srr showed no allosteric properties: neither of these enzymatic activities was affected by either L-amino acids (isoleucine and valine) or most of the metal ions. Only Fe2+ and Cu2+ caused 20 to 30% inhibition and 30 to 40% stimulation of both enzyme activities, respectively. ATP inhibited racemase activity by 10 to 20%. The Km and Vmax values of the racemase activity of Srr for L-serine were 185 mM and 20.1 micromol/min/mg, respectively, while the corresponding values of the dehydratase activity of L-serine were 2.2 mM and 80.4 micromol/min/mg, respectively.  相似文献   

16.
The NH(2)-terminal amino acid sequence of L-threo-3-hydroxyaspartate dehydratase from Pseudomonas sp. T62 showed significant similarity to that of the SRY1 gene product of Saccharomyces cerevisiae (serine racemase in yeast). SRY1 was cloned and expressed in Escherichia coli, and the gene product was purified and partially characterized. The SRY1 gene product exhibited dehydratase activity specific for L-threo-3-hydroxyaspartate (K(m)=3.9 mM, V(max)=110 micromol min(-1) (mg protein)(-1)) but not for D-threo- or DL-erythro-3-hydroxyaspartate. The purified enzyme showed no detectable serine racemase activity. The activity of the enzyme was inhibited by hydroxylamine and EDTA, and was activated by Mg(2+), Ca(2+), and Mn(2+), suggesting that pyridoxal-5'-phosphate and divalent cations participate in the enzyme reaction. Gene disruption and overexpression indicated that SRY1 is responsible for the 3-hydroxyaspartate resistance of S. cerevisiae. To our knowledge, this is the first report of 3-hydroxyaspartate dehydratase activity in eukaryotic cells.  相似文献   

17.
A mitochondrial endonuclease from Drosophila melanogaster embryos was purified to near homogeneity by successive fractionation with DEAE-cellulose and heparin--avidgel-F, followed by FPLC chromatography on mono S, Superose 12 and a second mono S column. This enzyme digests double-stranded DNA more efficiently than heat-denatured DNA. The endonuclease activity has a molecular mass of 44 kDa, as determined under native conditions using a gel-filtration Superose 12 column. The prominent peptide detected by SDS/polyacrylamide gel electrophoresis likewise has a molecular mass of 44 kDa, suggesting a monomeric protein. The enzyme has an absolute requirement for divalent cations, preferring Mg2+ over Mn2+. No activity could be detected when these cations were replaced by Ca2+ or Zn2+. The pH optimum for this enzyme activity is 6.5-7.4 and its isoelectric point is 4.9. Both single-strand and double-strand breaks are introduced simultaneously into a supercoiled substrate in the presence of MgCl2 or MnCl2. Endonuclease-treated DNA serves as a substrate for DNA polymerase I from Escherichia coli, suggesting that 3'-OH termini are generated during cleavage. The enzyme is free from any detectable DNA exonuclease activity but not from RNase activity. Partial inhibition by antibodies raised against mitochondrial endonucleases derived from bovine heart and Saccharomyces cerevisiae have revealed a potential structural homology between these nucleases.  相似文献   

18.
从恶臭假单胞菌(Pseudomonas putida)200的基因组出发,用PCR方法克隆到两个独立作用的丙氨酸消旋酶基因,称之为dadX和alr。DadX编码357个氨基酸长的多肽,计算分子量为38.82kDa,alr编码409个氨基酸长的多肽,计算分子量为44.182kDa。序列分析显示,DadX的氨基酸序列与Pseudomonas putidaKT2440,铜绿假单胞菌(Pseudomonas aeruginosa),鼠伤寒沙门氏菌(Salmonella typhimurium)和大肠杆菌(Escherichia coli)的DadX比较,相似性分别为96.64%、71.99%、44.88%和47.37%。Alr的氨基酸序列与Pseudomonas putidaKT2440比较,同源性为94.38%,而与铜绿假单胞菌(P.aeruginosa)、鼠伤寒沙门氏菌(S.typhimurium)和大肠杆菌(E.coli)的Alr比较,同源性均较低,分别为22.89%、25.72%和26.44%。在P.putida200的DadX和Alr氨基酸序列中部发现有对于酶活性至关重要的保守区域,如磷酸吡哆醛(PLP)结合位点。DadX和alr在大肠杆菌中得到表达,DadX丙氨酸消旋酶只对丙氨酸有消旋作用,而Alr丙氨酸消旋酶可以作用于丙氨酸和丝氨酸两种底物,且对丝氨酸特异性更高。Alr的表达不依赖于外源启动子,说明在其结构基因上游存在启动子结构。  相似文献   

19.
Thirty-one different actinomycete strains were used in a genetic screening using PCR and Southern hybridization methods to detect N-acetylamino acid racemases (AAR) in order to obtain enzymes with different properties. Cloning and sequencing of a 2.5 kb EcoRI DNA fragment from Amycolatopsis orientalis subsp. lurida revealed the coding gene of an N-acetylamino acid racemase, which had identities to the aar gene of Amycolatopsis sp. TS-1-60 [Tokuyama and Hatano (1995) Appl Microbiol Biotechnol 42:884-889] of 86% at the level of DNA, and 90% at the level of amino acids. The heterologous overexpression in Escherichia coli resulted in a specific activity of about 0.2 U/mg of this racemase. A two-step purification with heat treatment followed by anion-exchange chromatography led to almost homogeneous enzyme. The optimum pH of the enzyme was 8.0 and it was stable at 50 degrees C for 30 min. The relative molecular mass of the native enzyme and the subunit was calculated to be 300 kDa and 40 kDa by gel filtration and SDS-PAGE, respectively. The isoelectric point (pI) of the AAR was 4.4. It catalyzed the racemization of optically active N-acetylamino acids such as N-acetyl-L- or -D-methionine and N-acetyl-L-phenylalanine. Further characterization of the racemase demonstrated a requirement for divalent metal ions (Co2+, Mn2+, Mg2+) for activity and inhibition by EDTA and p-hydroxymercuribenzoic acid. AAR is sensitive to substrate inhibition at concentrations exceeding 200 mM.  相似文献   

20.
High concentrations of D-aspartate occur in blood shell Scapharca broughtonii (Mollusca) tissues. We purified aspartate racemase from the foot muscle of the bivalve to electrophoretic homogeneity. The molecular mass shown by sodium dodecyl sulfate polyacrylamide gel was 39 kDa, while that shown by gel filtration ranged from 51 to 63 kDa. Pyridoxal 5'-phosphate-dependency of the enzyme was demonstrated by its absorption spectrum as well as the effects of amino-oxyacetate and other reagents on the activity and spectrum. The enzyme is highly specific to aspartate and does not racemize L-alanine, L-serine and L-glutamate. It showed the highest activity at pH 8 both in the conversion of L- to D- and D- to L-aspartate, and the optimal temperature was 25 degrees C. V(max) and K(m) values for L-aspartate were 7.39 micromolmin(-1)mg(-1) and 60.4 mM and those for D-aspartate were 22.6 micromolmin(-1)mg(-1) and 159 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号