首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activity of the pentose phosphate pathway in isolated liver cells   总被引:2,自引:0,他引:2  
Isolated liver cells have been used to assess the relative contribution of the pentose phosphate pathway to glucose metabolism. The incorporation of carbon from specifically labelled glucose into 14CO2 by isolated cells gave values (μg.atoms/g.cells/hr) of: C-1, 7.9; C-6, 1.3; C-U, 3.4. The corresponding figures for liver slices were: C-1, 2.3; C-6, 1.6; C-U, 3.0. The most striking difference was the 3.5-fold increase in the oxidation of C-1 of glucose. Isolated cells retain more than 50% of ATP and have a content of intermediates of the glycolytic pathway closely similar to freeze-clamped liver. The relative importance of the pentose phosphate pathway in isolated liver cells, approximately 16% of glucose catabolised, is consistent with the enzyme profile of liver and the reductive synthetic reactions of the tissue.  相似文献   

2.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

3.
4.
1. The classical pentose and not the L-type pathway functions in liver (Rognstad et al., 1982; Landau and Wood, 1983a; Landau, 1985; Scofield et al., 1985b). 2. It seems necessary to summarize again the reasons for this conclusion because of a recent review by Williams and his coworkers in this Journal (Williams et al., 1987).  相似文献   

5.
A mathematical model based on kinetic data taken from the literature is presented for the pentose phosphate pathway in fasted rat liver steady-state. Since the oxidative and non oxidative pentose phosphate pathway can act independently, the complete (oxidative + non oxidative) and the non oxidative pentose pathway were simulated.Sensitivity analyses are reported which show that the fluxes are mainly regulated by D-glucose-6-phosphate dehydrogenase (for the oxidative pathway) and by transketolase (for the non oxidative pathway). The most influent metabolites were the group ATP, ADP, P1 and the group NADPH, NADP+ (for the non oxidative pathway).Abbreviations GK Glucokinase, (E.C. 2.7.1.2.) - G6PDH D-glucose-6-phosphate dehydrogenase, (E.C. 1.1.1.49) - PLase 6-Phosphogluconelactonase, (E.C. 3.1.1.31.) - PGIcDH 6-Phosphogluconate dehydrogenase, (E.C. 1.1.1.44) - RPI D-ribose-5-phosphate keto-isomerase, (E.C. 5.3.1.6) - TK D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycol-aldehyde transferase, (E.C. 2.2.1.1.) - TA D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate dihydroxyacetone transferase, (E.C. 2.2.1.2) - EP D-ribulose-5-phosphate-3-epimerase, (E.C. 5.1.3.1) - PGI D-glucose-6-phosphate keto-isomerase, (E.C. 5.3.1.9) - TPI D-glyceraldehyde-3-phosphate keto-isomerase, (E.C.5.3.1.1)  相似文献   

6.
7.
Approximately the same levels of six of the seven enzymes catalyzing reactions of the pentose phosphate pathway are in the cisternae of washed microsomes from rat heart, spleen, lung, and brain. Renal and hepatic microsomes also have detectable levels of these enzymes except ribulose-5-phosphate epimerase and ribose-5-phosphate isomerase. Their location in the cisternae is indicated by their latencies, i.e. requirement for disruption of the membrane for activity. In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes. The failure to detect the epimerase and isomerase in hepatic microsomes is due to inhibition of their assays by ketopentose-5-phosphatase. Xylulose 5-phosphate is hydrolyzed faster than ribulose 5-phosphate. A mild heat treatment destroys hepatic xylulose-5-phosphatase and glucose-6-phosphatase without affecting acid phosphatase. These results plus the established wide distribution of glucose dehydrogenase, the microsomal glucose-6-phosphate dehydrogenase, and its localization to the lumen of the endoplasmic reticulum suggest that most mammalian cells have two sets of enzymes of the pentose phosphate pathway: one is cytoplasmic and the other is in the endoplasmic reticulum. The activity of the microsomal pentose phosphate pathway is estimated to be about 1.5% that of the cytoplasmic pathway.  相似文献   

8.
Rat liver cytosolic enzyme preparation catalyses the formation of sedoheptulose 1,7-P2 (60% of total heptulose-P formed) from hexose 6-P and triose 3-P (reverse mode of pentose pathway operation). Smaller amounts of sedoheptulose 1,7-P2 are also formed from ribose 5-P during the non-oxidative synthesis of hexose 6-P (forward pentose pathway operation). The apparent absence of erythrose 4-P in biological systems may be explained by its contribution to carbons 4,5,6 and 7 of sedoheptulose 1,7-P2 as well as its pronounced ability to exist in dimeric form. Apart from the aldolase catalyzed formation of sedoheptulose 1,7-P2, 6-phosphofructokinase also catalyses its formation from sedoheptulose 7-P and fructose 1,6-bisphosphatase catalyses its dephosphorylation. These three enzymes may contribute to the regulation of carbon flux through the near equilibrium reactions of the non-oxidative pentose phosphate pathway in vivo. The phosphotransferase enzyme of the L-type pentose pathway is also able to catalyse the interconversion of sedoheptulose mono and bisphosphates via D-glycero D-ido octulose-P.  相似文献   

9.
The pentose phosphate pathway has been studied in Trypanosoma cruzi, Clone CL Brener. Functioning of the pathway was demonstrated in epimastigotes by measuring the evolution of (14)CO(2) from [1-(14)C] or [6-(14)C]D-glucose. Glucose consumption through the PPP increased from 9.9% to 20.4% in the presence of methylene blue, which mimics oxidative stress. All the enzymes of the PPP are present in the four major developmental stages of the parasite. Subcellular localisation experiments suggested that the PPP enzymes have a cytosolic component, predominant in most cases, although all of them also seem to have organellar localisation(s).  相似文献   

10.
11.
12.
13.
A surgical procedure for the isolation of the liver from the systemic circulation of the anaesthetized rabbit is described. The technique allowed the metabolism in situ of intraportally infused substrates to be followed for periods up to 5min, free from the contaminating influences of metabolism by other body tissues. Details of the procedures necessary to achieve the uniform infusion, homogeneous distribution and containment of (14)C-labelled glucose substrates in the liver by haemostasis are described. Changes in pO(2), pCO(2), pH and the concentrations of NADP(+), NADPH and glucose during each minute interval of the total 5min period of metabolism are given. Reactant ratios of the lactate dehydrogenase system and the adenine nucleotide system have been calculated from the concentrations of the pertinent metabolites for the same period of metabolism. Glucose production by rabbit liver in situ proceeded at the rate of 1.08mumol/min per g wet wt. of liver during the 5min metabolic interval. The presence of the oxidative reactions of the pentose phosphate pathway of glucose metabolism was inferred from the quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose=1.8.  相似文献   

14.
Embryonic chick corneas at different stages of development were evaluated for activity of the pentose phosphate pathway. The appearance of activity was concurrent with the onset of corneal transperancy (stage 40). Highest values were found after complete transparency is achieved (stage 45 and after hatching). Phenazine methosulfate, an artificial electron acceptor, increased activity at all stages studied even before endogenous activity was measurable; however, no increase in glucose uptake was observed. Thus, the enzymes for the pathway are present at early stages (i.e., stage 38 and 40) although in latent form. The pathway probably functions in the developing cornea to generate NADPH rather than sugar moieties for macromolecular incorporation.  相似文献   

15.
16.
The pentose phosphate pathway and parasitic protozoa   总被引:2,自引:0,他引:2  
The pentose phosphate pathway plays a crucial role in the host-parasite relationship. It maintains a pool of NADPH, which serves to protect against oxidant stress and which generates carbohydrate intermediates used in nucleotide and other biosynthetic pathways. Deficiency in the first enzyme of the pathway, glucose-6-phosphate dehydrogenase, protects human erythrocytes from infection with Plasmodium falciparum for reasons that remain obscure. Loss of the third enzyme of the pathway, 6-phosphogluconate de-hydrogenase, is toxic, suggesting this enzyme might be a target for chemotherapy. Mike Barrett here summarizes the roles of the pentose phosphate pathway in various parasitic protozoa.  相似文献   

17.
Temperature and starvation were found to be factors which affected the PPP dehydrogenase activities in brook trout liver. Fish acclimated at 5 °C possessed greater levels of G6PD, H6PD, and 6PGD activity than those fish maintained at 10 or 15 °C. This phenomenon was probably associated with increased lipogenesis during cold acclimation.During starvation hepatic G6PD and 6PGD activities decreased, whereas H6PD activity increased slightly. Upon refeeding, the G6PD level gradually increased, but the “overshoot” in enzyme activity reported in mammalian studies was not observed.When both cold acclimation and starvation were studied simultaneously, regulation by temperature was initially the dominant control factor. After 6 wk at 5 °C, there was no difference in specific activities between starved and fed fish. However, fish maintained at 5 °C for longer than 2 mo did show the normal response to starvation and refeeding. Therefore, regulation of the PPP by temperature appears to be a transitory phenomenon and may be associated with temporary metabolic reorganization in the fish.  相似文献   

18.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

19.
Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.  相似文献   

20.
Physiological functions of the pentose phosphate pathway   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号