首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《Inorganica chimica acta》1988,147(2):261-264
Stability constants of lanthanide complexes with 1,4,7,10,13,16-hexaazacyclooctadecane (A618C6) in aqueous 0.1 M NaC1 medium have been determined at 20 °C by an out-of-cell potentiometric titration method. Lanthanide complexes with A618C6 are more stable than those of the macrocyclic polyethers and bicyclic cryptands. No appreciable metal ion specificity is observed, but with increasing atomic number of the lanthanides, the stability increases similarly to that observed for diazapolyoxa-macrocycles. The unusually high stability of the lanthanide A618C6 complexes is discussed in terms of the formation of partial bonds between the lanthanide ion and nitrogen donors and the inertness of the Ln-hexaaza-18-membered system.  相似文献   

2.
3.
Spontaneous symmetry breaking in reactive systems, known as a rare physical phenomenon and for the Soai autocatalytic irreversible reaction, might in principle also occur in other, more common asymmetric reactions when the chiral product is capable to promote its formation and an element of "nonlinearity" is involved in the reaction scheme. Such phenomena are long sought after in chemistry as a possible explanation for the biological homochirality of biomolecules. We have investigated homogeneous organic stereoselective Mannich and Aldol reactions, in which the product is capable to form H-bridged complexes with the prochiral educt, and found by applying NMR spectroscopy, HPLC analysis, and optical rotation measurements 0.3-50.8% of random product enantiomeric excess under essentially achiral reaction conditions. These findings imply a hitherto overlooked mechanism for spontaneous symmetry breaking and, hence, a novel approach to the problem of absolute asymmetric synthesis and could have also potential significance for the conundrum of homochirality.  相似文献   

4.
Water immiscible ionic liquids as solvents for whole cell biocatalysis   总被引:9,自引:0,他引:9  
Whole cell biocatalysis can effectively be used for the production of enantiomerically pure compounds, but efficiency is often low. Toxicity and poor solubility of substrates and products are the main obstacles. In this study, water immiscible ionic liquids are shown to have no damaging effects on the cell membranes of Escherichia coli and Saccharomyces cerevisiae. Thus, they can be used as biocompatible solvents for microbial biotransformations exemplified by an increase in yield of chiral alcohol synthesis. As key point to the success of these processes, the distribution ratio of the reactants between the ionic liquid and the aqueous phase was identified. The use of ionic liquids as substrate reservoir and in situ extracting agent for the asymmetric reduction of various ketones resulted in an increase of chemical yield from <50% to 80-90% in simple batch processes. (R)-1-(4-chlorophenyl)ethanol was produced at a higher initial reaction rate in the biphasic system (>50 microM s(-1) L(-1)) compared to the aqueous system. This result demonstrates that good mass transfer rates can be obtained despite the relatively high viscosity of ionic liquids.  相似文献   

5.
We have examined the thermodynamics of lanthanide ion binding to adriamycin by monitoring the effects of variations in temperature on the dissociation constants of various lanthanide ion complexes of the drug. These constants were obtained by analyzing the extent of quenching of the fluorecence of adriamycin in the presence of lanthanide ions in terms of an equilibrium binding process. Our binding model included the following features, all of which are supported by evidence derived from previous published reports, vide infra. The lanthanides form 1:1 complexes with adriamycin. The binding is dependent on the pH of the solution, indicating that only the nonprotonated amine form of the drug participates in lanthanide ion binding. And finally the drug self-associates in solution to for a dimeric species. Our present results indicate that the binding process is almost completely independent of temperature, indicating that the enthalpy of complex formation is extremely small. The entropy terms are consistent with the formation of a complex in which the adriamycin acts as a bidentate ligand. Our results suggest that the lanthanide complexes are isostructural, at least as far as the adriamycin is concerned, throughout the lanthanide series.  相似文献   

6.
Wang J  Ji X  Shi J  Sun H  Jiang H  Liu H 《Amino acids》2012,42(5):1685-1694
We have developed the first operationally simple and environmentally benign protocol for the aqueous asymmetric Michael addition reaction of chiral nickel(II) glycinate with nitroalkenes. The reactions proceeded smoothly in the presence of TBAB (tetrabutyl ammonium bromide) in neat water at room temperature and provided good yields of β-substituted α,γ-diaminobutyric acid derivatives with excellent diastereoselectivities.  相似文献   

7.
Microalgal photo-biocatalysis is a green technique for asymmetric synthesis. Asymmetric reduction of nonnatural prochiral ketones to produce chiral alcohols by microalgal photo-biocatalysis was studied in this work. Acetophenone (ACP) and ethyl acetoacetate (EAA) were chosen as model substrates for aromatic ketones and β-ketoesters, respectively. Two prokaryotic cyanophyta and two eukaryotic chlorophyta were selected as photo-biocatalysts. The results proved that nonnatural prochiral ketones can be reduced by microalgal photo-biocatalysis with high enantioselectivity. Illumination is indispensable to the photo-biocatalysis. For aromatic ketone, cyanophyta are eligible biocatalysts. For ACP asymmetric reduction reaction, about 45% yield and 97% e.e. can be achieved by the photo-biocatalysis reaction with Spirulina platensis as biocatalyst. On the contrary, chlorophyta are efficient biocatalysts for β-ketoester asymmetric reduction reaction among the four tested algae. For EAA asymmetric reduction reaction, about 70% yield and 90% e.e. can be achieved with Scenedesmus obliquus as biocatalyst. The microalgae used in this study outperformed other characterized biocatalysts such as microbial and plant cells.  相似文献   

8.
Esters of 1-(1-naphthly)ethylurea derivatives of L-valine, L-leucine, L-tert-leucine, and L-proline are examined as organic-soluble chiral nuclear magnetic resonance (NMR) resolving agents. The reagents are useful for resolving the spectra of chiral sulfoxides, amines, alcohols, and carboxylic acids. Enantiomeric resolution is caused by a combination of diastereomeric effects and the different association constants of the substrates with the resolving agents. Organic-soluble lanthanide species are added to resolving agent-substrate mixtures and often enhance the enantiomeric resolution. The enhancement occurs because the substrate that exhibits weaker binding with the resolving agent is more available to bond to the lanthanide. Broadening in the spectra with lanthanides is reduced at 50°C. Enantiomeric resolution is still observed at elevated temperatures. Chirality 9:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
手性醇是许多手性药物合成的关键手性砌块,利用微生物细胞催化相应前手性羰基化合物不对称还原,是合成手性醇的重要方法之一。但应用野生微生物催化时,反应的时空产率、立体选择性较低。详细介绍了利用微生物重组技术以促进前手性羰基化合物不对称还原反应合成手性醇的国内外研究进展。从酶的种类、表达系统以及辅酶再生系统3个方面对重组细胞催化反应体系的构建进行了概述。同时按照反应底物的类型,对重组微生物在催化不同类型羰基化合物不对称还原合成手性醇中的应用分别进行了归纳和介绍。  相似文献   

10.
Chen L  Cheng F  Jia L  Zhang A  Wu J  Tang N 《Chirality》2011,23(1):69-75
Two new chiral dinuclear Mn(III)-Salen complexes with inherent phase-transfer capability have been synthesized, which serve as catalysts in the asymmetric epoxidation of nonfunctionalized alkenes. Experimental results show these complexes are effective catalysts for the asymmetric epoxidation of some cyclic alkenes and the catalysts have certain inherent phase-transfer capability during the epoxidation because of their weak water solubility. In general, good enantioselectivity and acceptable yields were achieved when NaClO was used as oxidant under three different reaction systems. Among these alkenes, the catalyst 6a gave the highest ee (94%) for 6-chloro-2,2-dimethylchromene in the presence of ionic liquid 2. Additionally, the recovery and recycling of one dimeric Mn(III)-Salen complex were tested to investigate atom efficiency of the catalyst in different reaction systems on the alkenes epoxidations. The catalyst 6a could be recovered and recycled for six times without losing activity and selectivity.  相似文献   

11.
The development of emissive lanthanide complexes as structural or reactive probes to signal changes in their local chiral or ionic environment has been inhibited by the lack of understanding of correlating structural and electronic spectral information. The definition of relatively rigid enantiopure macrocyclic lanthanide complexes, whose inter- and intramolecular exchange dynamics have been defined, offers scope for remedying this situation. Chiral axially symmetric lanthanide complexes in solution give rise to large emission dissymmetry values (g(em)) in CPL spectra. The sign and magnitude of g(em) are determined by the degree of twist about the principal axis, which is predicted to be a maximum at +/-22.5 degrees, and by the site symmetry and local ligand field. In particular, the polarisability of the ligand donor atoms, especially for any axial donor, is very important. Examples of each case are discussed for structurally related cationic Eu(III) complexes.  相似文献   

12.
Zhao S  Zhao J  Zhao D 《Carbohydrate research》2007,342(2):254-258
Three new salen ligands with carbohydrate moieties were prepared from a salicylaldehyde derivative obtained by reaction of 1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranose with 3-tert-butyl-5-(chloro-methyl)-2-hydroxybenzaldehyde. These ligands were coordinated with Mn(III) to give three chiral salen-Mn(III) complexes. The complexes were characterized and employed in the asymmetric epoxidation of unfunctionalized alkenes. Catalytic results showed that although there are no chiral groups on the diimine bridge, these complexes had some enantioselectivity, which indicates the carbohydrate moiety has an asymmetric inducing effect in the epoxidation reaction.  相似文献   

13.
The synthesis of macrocyclic lanthanide complexes via the reaction of 2,5-furandialdehyde with 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane in the presence of lanthanide nitrates as templating agents is described. The potential application of the complexes in transmetallation reactions is discussed.  相似文献   

14.
Abstract

An eco-friendly and environmentally benign asymmetric reduction of a broad range of prochiral ketones employing Brassica oleracea variety italica (stems and germinated plant) as a novel biocatalyst was developed. It was found that B. oleracea variety italica could be used effectively for enantioselective bioreduction in aqueous medium with moderate to excellent chemical yield and enantiomeric excess (ee). This process is more efficient and generates less waste than conventional chemical reagents or microorganisms. Both R- and S-configurations were obtained by these asymmetric reactions. The best ee were achieved for pyridine derivatives (92–99%). The ee in germinated plant reactions were significantly higher than those of stem reactions. The low cost and the easy availability of these biocatalysts suggest their possible use for large scale preparations of important chiral alcohols.  相似文献   

15.
Novel bioreduction system for the production of chiral alcohols   总被引:6,自引:0,他引:6  
Chiral alcohols are useful intermediates for many pharmaceuticals and chemicals. Enzymatic asymmetric reduction of prochiral carbonyl compounds is a promising method for producing chiral alcohols. There have been many attempts to construct bioreduction systems for the industrial production of chiral alcohols. This review focuses on the establishment of a novel bioreduction system using an Escherichia coli transformant co-expressing genes for carbonyl reductase and cofactor-regeneration enzyme. This bioreduction system could be useful as an all-purpose catalyst for asymmetric reduction reactions.  相似文献   

16.
Duddeck H  Gómez ED 《Chirality》2009,21(1):51-68
Enantiomers of chiral ethers and acetals are notoriously difficult to differentiate because their reactivity is low and they are poor donors to any Lewis acid or metal ion. As an exception, epoxides are somewhat better donors. This review describes the properties of ethers, explains NMR methods for their chiral recognition and describes successful examples of ether differentiation. The majority of literature reports deals with chiral lanthanide shift reagents and dirhodium tetracarboxylate complexes, which were used as enantiopure auxiliaries to create diastereomeric adducts with dispersed (1)H and (13)C NMR signals. The various methods are compared as to which is best suited for which purpose.  相似文献   

17.
The asymmetric hydroformylation reaction represents a potential powerful synthetic tool for the preparation of large number of different chiral products to be used as precursors of several organic compounds endowed with therapeutic activity. Essential and nonessential amino acids, 2-arylpropanoic acids, aryloxypropyl- and beta-phenylpropylamines, modified beta-phenylethylamines, pheniramines, and other classes of pharmaceuticals are available through enantioselective oxo-reaction of appropriate functionalized olefins; this process is catalyzed by rhodium or platinum complexes with chiral ligands, mainly chelating phosphines, and sometimes affords very high enantiomeric excesses. Furthermore, the application of many simple optically active aldehydes arising from asymmetric hydroformylation as chiral building blocks for the synthesis of complex pharmacologically active molecules such as antibiotics, peptides, antitumor macrocycle compounds, and prostaglandins is conveniently emphasized. The possibility of a future application of this asymmetric process for the production of many synthons to obtain other valuable pharmaceuticals is widely discussed too.  相似文献   

18.
以4'-氯苯乙酮为模型底物,对筛选得到的Candida krusei SW2026的羰基还原酶产酶条件进行研究。结果表明:适宜的发酵培养基组成为甘油50g/L,玉米浆20g/L,KH2PO4 4g/L,MgSO4·7H2O 1.5g/L;适宜的培养条件为温度30℃,初始pH6,摇床转速200r/min,发酵周期48h。在产酶发酵条件下培养的湿细胞对4'-氯苯乙酮进行不对称还原反应,产物(S)-4'-氯-α-苯乙醇的产率最高达88.56%,e.e.值稳定在87%左右。  相似文献   

19.
Alkyne is a useful functionality incorporated in proteins for site-selective bioconjugation reactions. Although effective bioconjugation reactions such as copper(I)-catalyzed and/or copper-free 1,3-dipolar cycloadditions of alkynes and azides are the most common approaches, the development of new alkyne-based bioconjugation reactions is still an ongoing interest in chemical biology. In this work, a new approach has been developed for selective modification of alkyne-linked peptides and proteins through the formation of arylacetylenes by a cross-coupling reaction of 6-membered ring cyclometalated gold(III) (C^N) complexes (HC^N = 2-arylpyridines) with terminal alkynes. Screening of the reaction conditions with a series of cyclometalated gold(III) complexes with phenylacetylene gave an excellent yield (up to 82%) by conducting the reaction in slightly alkaline aqueous conditions. The reaction scope was expanded to various alkynes, including alkyne-linked peptides to achieve up to >99% conversion. Using fluorescent dansyl (1l) and BODIPY (1m)-linked gold(III) complexes, alkyne-linked lysozyme has been selectively modified.  相似文献   

20.
Polyaminopolycarboxylate-based ligands are commonly used to chelate lanthanide ions, and the resulting complexes are useful as contrast agents for magnetic resonance imaging (MRI). Many commercially available ligands are especially useful because they contain functional groups that allow for fast, high-purity, and high-yielding conjugation to macromolecules and biomolecules via amine-reactive activated esters and isothiocyanate groups or thiol-reactive maleimides. While metalation of these ligands is considered common knowledge in the field of bioconjugation chemistry, subtle differences in metalation procedures must be taken into account when selecting metal starting materials. Furthermore, multiple options for purification and characterization exist, and selection of the most effective procedure partially depends on the selection of starting materials. These subtle differences are often neglected in published protocols. Here, our goal is to demonstrate common methods for metalation, purification, and characterization of lanthanide complexes that can be used as contrast agents for MRI (Figure 1). We expect that this publication will enable biomedical scientists to incorporate lanthanide complexation reactions into their repertoire of commonly used reactions by easing the selection of starting materials and purification methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号