首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
When a recA strain of Escherichia coli was transformed with the multicopy plasmid pSF11 carrying the uvrA gene of E. coli, its extreme ultraviolet (UV) sensitivity was decreased. The sensitivity of the lexA1 (Ind(-)) strain to UV was also decreased by pSF11. The recA cells expressing Neurospora crassa UV damage endonuclease (UVDE), encoding UV-endonuclease, show UV resistance. On the other hand, only partial amelioration of UV sensitivity of the recA strain was observed in the presence of the plasmid pNP10 carrying the uvrB gene. Host cell reactivation of UV-irradiated lambda phage in recA cells with pSF11 was as efficient as that in wild-type cells. Using an antibody to detect cyclobutane pyrimidine dimers, we found that UV-irradiated recA cells removed dimers from their DNA more rapidly if they carried pSF11 than if they carried a vacant control plasmid. Using anti-UvrA antibody, we observed that the expression level of UvrA protein was about 20-fold higher in the recA strain with pSF11 than in the recA strain without pSF11. Our results were consistent with the idea that constitutive level of UvrA protein in the recA cells results in constitutive levels of active UvrABC nuclease which is not enough to operate full nucleotide excision repair (NER), thus leading to extreme UV sensitivity.  相似文献   

2.
Plasmid pBEU14, which carries the Escherichia coli recA+ gene and which can be amplified by manipulation of growth temperature, was constructed. When pBEU14 deoxyribonucleic acid was amplified, a high rate of synthesis and accumulation of recA protein resulted. Amplification of the recA gene and protein did not cause induction of prophage lambda, indicating that the proteolytic activity of the recA protein was not stimulated.  相似文献   

3.
4.
A recombinant plasmid carrying the recA gene of Aeromonas caviae was isolated from an A. caviae genomic library by complementation of an Escherichia coli recA mutant. The plasmid restored resistance to both UV irradiation and to the DNA-damaging agent methyl methanesulfonate in the E. coli recA mutant strain. The cloned gene also restored recombination proficiency as measured by the formation of lac+ recombinants from duplicated mutant lacZ genes and by the ability to propagate a strain of phage lambda (red gam) that requires host recombination functions for growth. The approximate location of the recA gene on the cloned DNA fragment was determined by constructing deletions and by the insertion of Tn5, both of which abolished the ability of the recombinant plasmid to complement the E. coli recA strains. A. caviae recA::Tn5 was introduced into A. caviae by P1 transduction. The resulting A. caviae recA mutant strain was considerably more sensitive to UV light than was its parent. Southern hybridization analysis indicated that the A. caviae recA gene has diverged from the recA genes from a variety of gram-negative bacteria, including A. hydrophila and A. sobria. Maxicell labeling experiments revealed that the RecA protein of A. caviae had an Mr of about 39,400.  相似文献   

5.
Interspecific complementation of an Escherichia coli recA mutant was used to identify recombinant plasmids within a genomic cosmid library derived from Neisseria gonorrhoeae that carry the gonococcal recA gene. These plasmids complement the E. coli recA mutation in both homologous recombination functions and resistance to DNA damaging agents. Subcloning, deletion mapping, and transposon Tn5 mutagenesis were used to localize the gonococcal gene responsible for suppression of the E. coli RecA- phenotype. Defined mutations in and near the cloned gonococcal recA gene were constructed in vitro and concurrently associated with a selectable genetic marker for N. gonorrhoeae and the mutated alleles were then reintroduced into the gonococcal chromosome by transformation-mediated marker rescue. This work resulted in the construction of two isogenic strains of N. gonorrhoeae, one of which expresses a reduced proficiency in homologous recombination activity and DNA repair function while the other displays an absolute deficiency in these capacities. These gonococcal mutants behaved similarly to recA mutants of other procaryotic species and displayed phenotypes consistent with the data obtained by heterospecific complementation in an E. coli recA host. The functional activities of the recA gene products of N. gonorrhoeae and E. coli appear to be highly conserved.  相似文献   

6.
Isolation and characterization of the recA gene of Rhizobium meliloti.   总被引:34,自引:26,他引:8       下载免费PDF全文
Interspecific complementation of an Escherichia coli recA mutant with plasmids containing a gene bank of Rhizobium meliloti DNA was used to identify a clone which contains the recA gene of R. meliloti. The R. meliloti recA protein can function in recombination and in response to DNA damage when expressed in an E. coli recA host, and hybridization studies have shown that DNA sequence homology exists between the recA gene of E. coli and that of R. meliloti. The isolated R. meliloti recA DNA was used to construct a recA R. meliloti, and this bacterium was not deficient in its ability to carry out symbiotic nitrogen fixation.  相似文献   

7.
Mutants of the cI gene of prophage lambda have been defined phenotypically in a recA+ host as noninducible (Ind-), inducible (Ind+), or induction sensitive (Inds). We showed that a phage lambda cI+ carrying operator mutations v2 and v3 displays an Inds phenotype, as does lambda cI inds-1. We characterized a fourth induction phenotype called induction resistant (Indr). Using these four prophage types, we tested the influence of bacterial recA mutations on prophage induction. Indr prophages were fully induced in recA441 bacteria whose RecA441 protein is activated constitutively. Indr prophages were not induced in a mutant overproducing RecA+ protein, confirming that RecA+ protein must be activated to promote prophage induction. Inds prophages were induced in recA142 and recA453-441 lysogens, previously described as deficient in prophage induction.  相似文献   

8.
The recA gene of Synechococcus sp. strain PCC 7002 was detected and cloned from a lambda gtwes genomic library by heterologous hybridization by using a gene-internal fragment of the Escherichia coli recA gene as the probe. The gene encodes a 38-kilodalton polypeptide which is antigenically related to the RecA protein of E. coli. The nucleotide sequence of a portion of the gene was determined. The translation of this region was 55% homologous to the E. coli protein; allowances for conservative amino acid replacements yield a homology value of about 74%. The cyanobacterial recA gene product was proficient in restoring homologous recombination and partial resistance to UV irradiation to recA mutants of E. coli. Heterologous hybridization experiments, in which the Synechococcus sp. strain PCC 7002 recA gene was used as the probe, indicate that a homologous gene is probably present in all cyanobacterial strains.  相似文献   

9.
Temperature-sensitive integration plasmids carrying internal fragments of the Streptomyces lividans TK24 recA gene were constructed and used to inactivate the chromosomal recA gene of S. lividans by gene disruption and gene replacement. Integration of these plasmids resulted in recA mutants expressing C-terminally truncated RecA proteins, as deduced from Southern hybridization experiments. Mutants FRECD2 in which the last 42 amino acids, comprising the variable part of bacterial RecA proteins, had been deleted retained the wild-type phenotype. The S. lividans recA mutant FRECD3 produced a RecA protein lacking 87 amino acids probably including the interfilament contact site. FRECD3 was more sensitive to UV and MMS than the wild-type. Its ability to undergo homologous recombination was impaired, but not completely abolished. Integration of the disruption plasmid pFRECD3 in S. coelicolor“Müller” caused the same mutant phenotype as S. lividans FRECD3. In spite of many attempts no S. lividans recA mutants with deletions of 165 C-terminal amino acids or more were isolated. Furthermore, the recA gene could not be replaced by a kanamycin resistance cassette. These experiments indicate a crucial role of the recA gene in ensuring viability of Streptomyces.  相似文献   

10.
11.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

12.
The recA gene of Pseudomonas aeruginosa PAO has been isolated and introduced into Escherichia coli K-12. Resistance to killing by UV irradiation was restored in several RecA-E. coli K-12 hosts by the P. aeruginosa gene, as was resistance to methyl methanesulfonate. Recombination proficiency was also restored, as measured by HfrH-mediated conjugation and by the ability to propagate Fec-phage lambda derivatives. The cloned P. aeruginosa recA gene restored both spontaneous and mitomycin C-stimulated induction of lambda prophage in lysogens of a recA strain of E. coli K-12.  相似文献   

13.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

14.
A recombinant plasmid carrying the recA gene of Vibrio cholerae was isolated from a V. cholerae genomic library, using complementation in Escherichia coli. The plasmid complements a recA mutation in E. coli for both resistance to the DNA-damaging agent methyl methanesulfonate and recombinational activity in bacteriophage P1 transductions. After determining the approximate location of the recA gene on the cloned DNA fragment, we constructed a defined recA mutation by filling in an XbaI site located within the gene. The 4-base pair insertion resulted in a truncated RecA protein as determined by minicell analysis. The mutation was spontaneously recombined onto the chromosome of a derivative of V. cholerae strain P27459 by screening for methyl methanesulfonate-sensitive variants. Southern blot analysis confirmed the presence of the inactivated XbaI site in the chromosome of DNA isolated from one of these methyl methanesulfonate-sensitive colonies. The recA V. cholerae strain was considerably more sensitive to UV light than its parent, was impaired in homologous recombination, and was deficient in induction of a temperate vibriophage upon exposure to UV light. We conclude that the V. cholerae RecA protein has activities which are analogous to those described for the RecA protein of E. coli.  相似文献   

15.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

16.
It has been previously reported that the ultraviolet sensitivity of recA strains of Escherichia coli in the dark is suppressed by a plasmid pKY1 which carries the phr gene, suggesting that this is due to a novel effect of photoreactivating enzyme (PRE) of E. coli in the dark (Yamamoto et al., 1983a). In this work, we observed that an increase of UV-resistance by pKY1 in the dark is not apparent in strains with a mutation in either uvrA, uvrB, uvrC, lexA, recBC or recF. The sensitivity of recA lexA and recA recBC multiple mutants to UV is suppressed by the plasmid but that of recA uvrA, recA uvrB and recA uvrC is not. Host-cell reactivation of UV-irradiated lambda phage is slightly more efficient in the recA/pKY1 strain compared with the parental recA strain. On the other hand, the recA and recA/pKY1 strains do not differ significantly in the following properties: Hfr recombination, induction of lambda by UV, and mutagenesis. We suggest that dark repair of PRE is correlated with its capacity of excision repair.  相似文献   

17.
18.
A gene required for growth and viability in recA mutants of Escherichia coli K-12 was identified. This gene, rdgB (for Rec-dependent growth), mapped near 64 min on the E. coli genetic map. In a strain carrying a temperature-sensitive recA allele, recA200, and an rdgB mutation, DNA synthesis but not protein synthesis ceased after 80 min of incubation at 42 degrees C, and there was extensive DNA degradation. The rdgB mutation alone had no apparent effect on DNA synthesis or growth; however, mutant strains did show enhanced intrachromosomal recombination and induction of the SOS regulon. The rdgB gene was cloned and its-gene product identified through the construction and analysis of deletion and insertion mutations of rdgB-containing plasmids. The ability of a plasmid to complement an rdgB recA mutant was correlated with its ability to produce a 25-kilodalton polypeptide as detected by the maxicell technique.  相似文献   

19.
A recA-lacZ protein fusion was constructed in vivo by using bacteriophage Mu dII301(Ap lac). The fusion contained the promoter and first 47 codons of the recA mutant, as determined by DNA sequence analysis. The fusion was cloned and used to construct a recA-lacZ operon fusion at the same site within the recA gene. These fusions were introduced into the Escherichia coli chromosome at the lambda attachment site either as complete or cryptic lambda prophages. Synthesis of beta-galactosidase from these fusions was inducible by UV radiation. As the UV dose was increased, induction became slower and persisted for a longer period of time. At low doses of UV radiation, more beta-galactosidase was produced in a uvrA mutant than in a wild-type strain; however, at high doses, no induced synthesis of beta-galactosidase occurred in a uvrA mutant. recA+ strains carrying either the protein or operon fusion on a multicopy plasmid showed reduced survival after UV irradiation. This UV sensitivity was not exhibited by strains containing a single copy of either fusion, however; hence, the fusions provide a reliable measure of recA expression.  相似文献   

20.
The nucleotide sequence of the recA gene of Thiobacillus ferrooxidans has been determined. No SOS box characteristic of LexA-regulated promoters could be identified in the 196-bp region upstream from the coding region. The cloned T. ferrooxidans recA gene was expressed in Escherichia coli from both the lambda pR and lac promoters. It was not expressed from the 2.2-kb of T. ferrooxidans DNA preceding the gene. The T. ferrooxidans recA gene specifies a protein of 346 amino acids that has 66% and 69% homology to the RecA proteins of E. coli and Pseudomonas aeruginosa, respectively. Most amino acids that have been identified as being of functional importance in the E. coli RecA protein are conserved in the T. ferrooxidans RecA protein. Although some amino acids that have been associated with proteolytic activity have been substituted, the cloned protein has retained protease activity towards the lambda and E. coli LexA repressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号