首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plasmid analogous to the one described by Nagai and Thogersen (Nature,309, 810–812, 1984) has been constructed for the expression of globins inE. coli. Induction with nalidixic acid produces high yields of a fusion protein, NS1-FX-β-globin, where NS1 represents 81 residues of a flu virus protein and FX represents a blood-clotting Factor Xa recognition sequence, Ile-Glu-Gly-Arg. This fusion protein is readily solubilized in 50 mM NaOH and remains in solution when thepH is adjusted to 8.6. Under these conditions, the fusion protein is hydrolyzed by activated Factor X, giving authentic β-globin which can be folded in the presence of cyanohemin and native α-chains to produce a tetrameric hemoglobin with the functional properties of natural human hemoglobin.  相似文献   

2.
A plasmid analogous to the one described by Nagai and Thogersen (Nature,309, 810–812, 1984) has been constructed for the expression of globins inE. coli. Induction with nalidixic acid produces high yields of a fusion protein, NS1-FX--globin, where NS1 represents 81 residues of a flu virus protein and FX represents a blood-clotting Factor Xa recognition sequence, Ile-Glu-Gly-Arg. This fusion protein is readily solubilized in 50 mM NaOH and remains in solution when thepH is adjusted to 8.6. Under these conditions, the fusion protein is hydrolyzed by activated Factor X, giving authentic -globin which can be folded in the presence of cyanohemin and native -chains to produce a tetrameric hemoglobin with the functional properties of natural human hemoglobin.  相似文献   

3.
Preparation of recombinant RNase single-chain antibody fusion proteins   总被引:4,自引:0,他引:4  
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.  相似文献   

4.
Members of the pancreatic ribonuclease (RNase) family have diverse activities toward RNA that could cause them to function during host defense and physiological cell death pathways. This activity could be harnessed by coupling RNases to cell binding ligands for the purpose of engineering them into cell-type specific cytotoxins. Therefore, the cytotoxic potential of RNase was explored by linking bovine pancreatic ribonuclease A via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10(-7) M, whereas > 10(-4) M of native RNase was required to inhibit protein synthesis. Cytotoxicity required both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Importantly, the RNase conjugates were found to have potent antitumor effects in vivo. Chimeric RNase fusion proteins were also developed. F(ab')2-like antibody-enzyme fusions were prepared by linking the gene for human RNase to a chimeric antitransferrin receptor heavy chain gene. The antibody enzyme fusion gene was introduced into a transfectoma that secreted the chimeric light chain of the same antibody, and cell lines were cloned that synthesized and secreted the antibody-enzyme fusion protein of the expected size at a concentration of 1-5 ng/mL. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis toward K562 cells that express the human transferrin receptor but not toward a nonhuman derived cell line. Since human ribonucleases coupled to antibodies also exhibited receptor mediated toxicities, a new approach to selective cell killing is provided. This may allow the development of new therapeutics for cancer treatment that exhibit less systemic toxicity and, importantly, less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

5.
Two cytotoxic proteins, bovine pancreatic ribonuclease A (RNase A), and a restriction endonuclease from Haemophilus parainfluenzae (HpaI), were produced using a novel semisynthetic approach that utilizes a protein splicing element, an intein, to generate a reactive thioester at the C-terminus of a recombinant protein. Nucleophilic attack on this thioester by the N-terminal cysteine of a synthetic peptide ultimately leads to the ligation of the two reactants through a native peptide bond. This strategy was used to produce RNase A and HpaI by isolating inactive truncated forms of these proteins, the first 109 and 223 amino acids of RNase A and HpaI, respectively, as fusion proteins consisting of the target protein, an intein, and a chitin binding domain. Thiol-induced cleavage of the precursor led to the liberation of the target protein with a C-terminal thioester-tag. Addition of synthetic peptides representing the amino acids missing from the truncated forms led to the generation of full-length products that displayed catalytic activity indicative of the wild-type enzymes. The turnover numbers and Km for ligated and renatured RNase A were 8.2 s(-1) and 1.5 mM, in good agreement with reported values of 8.3 s(-1) and 1.2 mM (Hodges & Merrifield, 1975). Ligated HpaI had a specific activity of 0.5-1.5 x 10(6) U/mg, which compared favorably with the expected value of 1-2 x 10(6) U/mg (J. Benner, unpubl. obs.). Besides assisting in the production of cytotoxic proteins, this technique could allow the easy insertion of unnatural amino acids into a protein sequence.  相似文献   

6.
《MABS-AUSTIN》2013,5(2):367-380
Human antibody-ribonuclease (RNase) fusion proteins, referred to as immunoRNases, have been proposed as an alternative to heterologous immunotoxins, without their immunogenicity and unspecific toxicity issues. In this study, we investigated if human pancreatic RNase will be suitable as effector component in a therapeutic antibody development platform. We generated several fusion proteins consisting of tumor-specific human immunoglobulins (IgGs) and human pancreatic RNase. Transient mammalian cell production was efficient and IgG-RNases were purified to homogeneity. Antigen binding was comparable to the parental antibodies and RNase catalytic activity was retained even in the presence of 50-fold molar excess of human cytosolic RNase inhibitor (RI). Serum stability, cell binding and internalization of IgG-RNases were comparable to the parental IgGs. Despite these promising properties, none of the IgG-RNases revealed significant inhibition of tumor cell growth in vitro even when targeting different antigens putatively employing different endocytotic pathways. The introduction of different linkers containing endosomal protease cleavage sites into the IgG-RNase did not enhance cytotoxicity. Similarly, RI evasive human pancreatic RNase variants mediated only small inhibiting effects on tumor cell growth at high concentrations, potentially reflecting inefficient cytosolic translocation. Taken together, human pancreatic RNase and variants did not prove to be generally suitable as effector component for a therapeutic antibody drug development platform.  相似文献   

7.
Human antibody-ribonuclease (RNase) fusion proteins, referred to as immunoRNases, have been proposed as an alternative to heterologous immunotoxins, without their immunogenicity and unspecific toxicity issues. In this study, we investigated if human pancreatic RNase will be suitable as effector component in a therapeutic antibody development platform. We generated several fusion proteins consisting of tumor-specific human immunoglobulins (IgGs) and human pancreatic RNase. Transient mammalian cell production was efficient and IgG-RNases were purified to homogeneity. Antigen binding was comparable to the parental antibodies and RNase catalytic activity was retained even in the presence of 50-fold molar excess of human cytosolic RNase inhibitor (RI). Serum stability, cell binding and internalization of IgG-RNases were comparable to the parental IgGs. Despite these promising properties, none of the IgG-RNases revealed significant inhibition of tumor cell growth in vitro even when targeting different antigens putatively employing different endocytotic pathways. The introduction of different linkers containing endosomal protease cleavage sites into the IgG-RNase did not enhance cytotoxicity. Similarly, RI evasive human pancreatic RNase variants mediated only small inhibiting effects on tumor cell growth at high concentrations, potentially reflecting inefficient cytosolic translocation. Taken together, human pancreatic RNase and variants did not prove to be generally suitable as effector component for a therapeutic antibody drug development platform.  相似文献   

8.
RNase E and its complex with other proteins ('degradosome') play an important role in RNA processing and decay in Escherichia coli and in many other bacteria. To identify the proteins which can potentially interact with this enzyme in mycobacteria, Mycobacterium tuberculosis H37Rv RNase E was cloned and expressed as a 6HisFLAG-tagged fusion protein. Analysis of the mycobacterial RNase E overexpressed and purified from M. bovis BCG revealed the presence of GroEL and two other copurified proteins, products of the Mb1721 (inorganic polyphosphate/ATP-NAD kinase) and Mb0825c (acetyltransferase) genes. Identical copies of these two genes can be found in M. tuberculosis H37Rv.  相似文献   

9.
The demand for new strategies in downstream processing of biopharmaceutical plasmid DNA has increased in response to the importance of nucleic acids as active pharmaceutical ingredients (API) in gene therapy and genetic vaccination. Led by the problematic usage of animal-derived proteins for producing reagents of clinical applications, we present an opportunity of removing RNA prior to chromatographic steps by using a recombinant RNase Ba (barnase of Bacillus amyloliquefaciens) as an alternative to bovine RNase A. An expression vector for RNase Ba production was constructed enabling periplasmic localization of the recombinant protein. Cultivation of the RNase-producing clone showed stable activity (3.6 kU mL(-1) during stationary phase) throughout the cultivation process. After purification the RNase activity was tested and compared to that of commercially available RNase A. RNase Ba showed no DNase activity even after prolonged incubation with plasmid DNA. Thus, it is a suitable substitute for bovine RNase A in pharmaceutical purification processes.  相似文献   

10.
Basic fibroblast growth factor (bFGF) was inserted in the middle of human ribonuclease 1 (RNase1) sequence at an RNase inhibitor (RI)-binding site (Gly89) by a new gene fusion technique, insertional-fusion. The resultant insertional-fusion protein (CL-RFN89) was active both as bFGF and as RNase. Furthermore, it acquired an additional ability of evading RI through steric blockade of RI-binding caused by fused bFGF domain. As a result, CL-RFN89 showed stronger growth inhibition on B16/BL6 melanoma cells than an RI-sensitive tandem fusion protein. Thus, the insertional-fusion technique increases accessible positions for gene fusion on RNase, resulting in construction of a potent cytotoxic RNase.  相似文献   

11.
Members of the pancreatic ribonuclease (RNase) family have diverse activities toward RNA that could cause them to function during host defense and physiological cell death pathways. This activity could be harnessed by coupling RNases to cell binding ligands for the purpose of engineering them into cell-type specific cytotoxins. Therefore, the cytotoxic potential of RNase was explored by linking bovine pancreatic ribonuclease A via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10−7 M, whereas>10−4 M of native RNase was required to inhibit protein synthesis. Cytotoxicity required both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Importantly, the RNase conjugates were found to have potent antitumor effects in vivo. Chimeric RNase fusion proteins were also developed. F(ab′)2-like antibody-enzyme fusions were prepared by linking the gene for human RNase to a chimeric antitransferrin receptor heavy chain gene. The antibody enzyme fusion gene was introduced into a transfectoma that secreted the chimeric light chain of the same antibody, and cell lines were cloned that synthesized and secreted the antibody-enzyme fusion protein of the expected size at a concentration of 1–5 ng/mL. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis toward K562 cells that express the human transferrin receptor but not toward a nonhuman derived cell line. Since human ribonucleases coupled to antibodies also exhibited receptor mediated toxicities, a new approach to selective cell killing is provided. This may allow the development of new therapeutics for cancer treatment that exhibit less systemic toxicity and, importantly, less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

12.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

13.
The ribonuclease MC1 (RNase MC1) from seeds of bitter gourd (Momordica charantia) consists of 190 amino acid residues with four disulfide bridges and belongs to the RNase T(2) family, including fungal RNases typified by RNase Rh from Rhizopus niveus and RNase T(2) from Aspergillus oryzae. The crystal structure of RNase MC1 has been determined at 1.75 A resolution with an R-factor of 19.7% using the single isomorphous replacement method. RNase MC1 structurally belongs to the (alpha+beta) class of proteins, having ten helices (six alpha-helices and four 3(10)-helices) and eight beta-strands. When the structures of RNase MC1 and RNase Rh are superposed, the close agreement between the alpha-carbon positions for the total structure is obvious: the root mean square deviations calculated only for structurally related 151 alpha-carbon atoms of RNase MC1 and RNase Rh molecules was 1.76 A. Furthermore, the conformation of the catalytic residues His-46, Glu-105, and His-109 in RNase Rh can be easily superposed with that of the possible catalytic residues His-34, Glu-84, and His-88 in RNase MC1. This observation strongly indicates that RNase MC1 from a plant origin catalyzes RNA degradation in a similar manner as fungal RNases.  相似文献   

14.
The gene coding for the 12-kDa protein (MPB57) of Mycobacterium bovis BCG has recently been cloned and sequenced (R. Yamaguchi, K. Matsuo, A. Yamazaki, S. Nagai, K. Terasaka, and T. Yamada. 1988. FEBS Lett. 240: 115-117). To map linear B-cell epitopes by beta-galactosidase fusion proteins, we have constructed convenient vectors (pUR278S, pUR288S, and pUR289S) with the SmaI site. Based on recognition by polyclonal antibodies, two epitope regions on the MPB57 protein were identified, both of which corresponded to the amino acid sequences Glu20 to Val45 (26 residues, epitope I region) and Ile78 to Leu86 (9 residues, epitope II). Complementary oligonucleotides encoding epitope II were synthesized, polymerized by a ligase reaction, inserted into the native MPB57 protein gene, and expressed in Escherichia coli, giving rise to epitope-inserted proteins. Their stability and potential uses are described.  相似文献   

15.
This article reports that a reversed micellar solution is useful for refolding proteins directly from a solid source. The solubilization of denatured RNase A, which had been prepared by reprecipitation from the denaturant protein solution, into reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) has been investigated by a solid-liquid extraction system. This method is an alternative to the ordinary protein extraction in reversed micelles based on the liquid-liquid extraction. The solid-liquid extraction method was found to facilitate the solubilization of denatured proteins more efficiently in the reversed micellar media than the ordinary phase transfer method of liquid extraction. The refolding of denatured RNase A entrapped in reversed micelles was attained by adding a redox reagent (reduced and oxidized glutathion). Enzymatic activity of RNase A was gradually recovered with time in the reversed micelles. The denatured RNase A was completely refolded within 30 h. In addition, the efficiency of protein refolding was enhanced when reversed micelles were applied to denatured RNase A containing a higher protein concentration that, in the case of aqueous media, would lead to protein aggregation. The solid-liquid extraction technique using reversed micelles affords better scale-up advantages in the direct refolding process of insoluble protein aggregates.  相似文献   

16.
The present study was performed to design an immunotoxin consisting of engineered RNase A and scFv of Cetuximab. To accomplish this study goal, at first to evade RNase A from its inhibitors in the cytoplasm, six amino acids of RNase A were substituted, then the physicochemical features of engineered RNase A were assessed. To investigate the interaction between the engineered RNase A and the ribonuclease inhibitor, protein–protein docking was performed. After engineering the RNase A, it was theoretically conjugated with scFv of Cetuximab using a cleavable linker to produce scFv-engineered RNase A. Then, wild-RNase A (14 kD), engineered RNase A (14 kD) and scFv-engineered RNase A (42 kDa) were expressed in the BL21 (DE3) strain of Escherichia coli and purified by Ni-NTA columns. To confirm the expressed proteins, western blot analysis was performed. The functioning of wild-RNase A and engineered RNase A were investigated by RNA fragmentation assay. Finally, to evaluate the cytotoxicity of scFv-engineered RNase A, a dose–response cytotoxicity assay was performed on Her1-positive and Her1-negative cell lines. The results showed that engineered RNase A could maintain its structure and disulfide bonds and evade its inhibitor. Expression and purification were successfully conducted and both enzymes could degrade yeast RNA. The result of cytotoxicity showed that the engineered immunotoxin could induce cell death to Her1-positive cell lines with an IC50 of 50 nM. It appears that scFv-engineered RNase A can be a promising molecule for use.  相似文献   

17.
18.
应用PCR技术从核糖核酸酶抑制因子 (ribonucleaseinhibitor ,RI)的克隆载体pT7 ri中扩增出ri片段 (1 5kb) ,亚克隆到融合表达载体pGEX 2T中 ,并转化感受态大肠杆菌BL2 1.异丙基半乳糖苷 (IPTG)诱导表达的GST RI经SDS PAGE证明分子量约 76kD ,表达量约占菌体蛋白总量 2 0 % .以包涵体形式表达的目的蛋白经尿素变性 ,透析复性得到的产物具有较高的抑制RNaseA的活性(15 0U ml) .复性的融合蛋白于 2 4℃经凝血酶作用 16h ,可被切割成 5 0kD的RI和 2 6kD的GST .  相似文献   

19.
The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein–protein interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号