首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
复制因子C包含1个大亚基和4个小亚基,在DNA复制、损伤修复和细胞增殖中起重要作用,拟南芥复制因子C亚基1(AtRFC1)是人类复制因子C大亚基p140的同源蛋白。在对3个复制因子C亚基1的T-DNA插入突变株系rfc1-1、rfc1-2和rfc1-3的检验中,证实插入位点分别位于第16、19号外显子和启动子区域。T-DNA在外显子中的插入突变引起胚胎发育异常并导致胚胎和种子败育。将野生型拟南芥复制因子C亚基1基因转化到突变株系rfc1-1和rfc1-2后恢复了突变株的野生型表型,证明胚胎发生异常表型是由拟南芥复制因子C亚基1基因突变所引起的,AtRFC1在拟南芥胚胎发生中起重要作用。  相似文献   

3.
The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such as rfa1-t11, are lethal in combination with rfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint gene RAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G(1)/S DNA damage checkpoint response and that both the rfc4-2 and rfa1-t11 strains are defective in the G(2)/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.  相似文献   

4.
We report here the isolation and functional analysis of the rfc3(+) gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3(+) gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3(+) is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.  相似文献   

5.
Replication factor C (RFC) is an essential, multi-subunit ATPase that functions in DNA replication, DNA repair, and DNA metabolism-related checkpoints. In order to investigate how the individual RFC subunits contribute to these functions in vivo, we undertook a genetic analysis of RFC genes from budding yeast. We isolated and characterized mutations in the RFC5 gene that could suppress the cold-sensitive phenotype of rfc1-1 mutants. Analysis of the RFC5 suppressors revealed that they could not suppress the elongated telomere phenotype, the sensitivity to DNA damaging agents, or the mutator phenotype of rfc1-1 mutants. Unlike the checkpoint-defective rfc5-1 mutation, the RFC5 suppressor mutations did not interfere with the methylmethane sulfonate- or hydroxyurea-induced phosphorylation of Rad53p. The Rfc5p suppressor substitutions mapped to amino acid positions in the conserved RFC box motifs IV-VII. Comparisons of the structures of related RFC box-containing proteins suggest that these RFC motifs may function to coordinate interactions between neighboring subunits of multi-subunit ATPases.  相似文献   

6.
拟南芥遮光培养2.5d时,rfc3-1突变体黄化幼苗的下胚轴平均长度约比野生型植株黄化幼苗的下胚轴长27.5%。观察表明,相对于野生型复制因子C亚基3(replication factor C3,AtRFC3)基因突变体的下胚轴表皮细胞,特别是上部靠近子叶部分的表皮细胞,单细胞长度变长。将野生型RFC3基因转染到rfc3-1后,突变体恢复野生型表型,进一步说明RFC3在黄化苗的下胚轴伸长生长中有作用。  相似文献   

7.
Replication factor C is required to load proliferating cell nuclear antigen onto primer-template junctions, using the energy of ATP hydrolysis. Four of the five RFC genes have consensus ATP-binding motifs. To determine the relative importance of these sites for proper DNA metabolism in the cell, the conserved lysine in the Walker A motif of RFC1, RFC2, RFC3, or RFC4 was mutated to either arginine or glutamic acid. Arginine mutations in all RFC genes tested permitted cell growth, although poor growth was observed for rfc2-K71R. A glutamic acid substitution resulted in lethality in RFC2 and RFC3 but not in RFC1 or RFC4. Most double mutants combining mutations in two RFC genes were inviable. Except for the rfc1-K359R and rfc4-K55E mutants, which were phenotypically similar to wild type in every assay, the mutants were sensitive to DNA-damaging agents. The rfc2-K71R and rfc4-K55R mutants show checkpoint defects, most likely in the intra-S phase checkpoint. Regulation of the damage-inducible RNR3 promoter was impaired in these mutants, and phosphorylation of Rad53p in response to DNA damage was specifically defective when cells were in S phase. No dramatic defects in telomere length regulation were detected in the mutants. These data demonstrate that the ATP binding function of RFC2 is important for both DNA replication and checkpoint function and, for the first time, that RFC4 also plays a role in checkpoint regulation.  相似文献   

8.
Lateral root formation, the primary way plants increase their root mass, displays developmental plasticity in response to environmental changes. The aberrant lateral root formation (alf)4-1 mutation blocks the initiation of lateral roots, thus greatly altering root system architecture. We have positionally cloned the ALF4 gene and have further characterized its phenotype. The encoded ALF4 protein is conserved among plants and has no similarities to proteins from other kingdoms. The gene is present in a single copy in Arabidopsis. Using translational reporters for ALF4 gene expression, we have determined that the ALF4 protein is nuclear localized and that the gene is expressed in most plant tissues; however, ALF4 expression and ALF4's subcellular location are not regulated by auxin. These findings taken together with further genetic and phenotypic characterization of the alf4-1 mutant suggest that ALF4 functions independent from auxin signaling and instead functions in maintaining the pericycle in the mitotically competent state needed for lateral root formation. Our results provide genetic evidence that the pericycle shares properties with meristems and that this tissue plays a central role in creating the developmental plasticity needed for root system development.  相似文献   

9.
The conserved lysine in the Walker A motif of the ATP-binding domain encoded by the yeast RFC1, RFC2, RFC3, and RFC4 genes was mutated to glutamic acid. Complexes of replication factor C with a N-terminal truncation (Delta2-273) of the Rfc1 subunit (RFC) containing a single mutant subunit were overproduced in Escherichia coli for biochemical analysis. All of the mutant RFC complexes were capable of interacting with PCNA. Complexes containing a rfc1-K359E mutation were similar to wild type in replication activity and ATPase activity; however, the mutant complex showed increased susceptibility to proteolysis. In contrast, complexes containing either a rfc2-K71E mutation or a rfc3-K59E mutation were severely impaired in ATPase and clamp loading activity. In addition to their defects in ATP hydrolysis, these complexes were defective for DNA binding. A mutant complex containing the rfc4-K55E mutation performed as well as a wild type complex in clamp loading, but only at very high ATP concentrations. Mutant RFC complexes containing rfc2-K71R or rfc3-K59R, carrying a conservative lysine --> arginine mutation, had much milder clamp loading defects that could be partially (rfc2-K71R) or completely (rfc3-K59R) suppressed at high ATP concentrations.  相似文献   

10.
Replication factor C (RFC) is a conserved eukaryotic complex consisting of RFC1/2/3/4/5. It plays important roles in DNA replication and the cell cycle in yeast and fruit fly. However, it is not very clear how RFC subunits function in higher plants, except for the Arabidopsis (At) subunits AtRFC1 and AtRFC3. In this study, we investigated the functions of AtRFC4 and found that loss of function of AtRFC4 led to an early sporophyte lethality that initiated as early as the elongated zygote stage, all defective embryos arrested at the two‐ to four‐cell embryo proper stage, and the endosperm possessed six to eight free nuclei. Complementation of rfc4‐1/+ with AtRFC4 expression driven through the embryo‐specific DD45pro and ABI3pro or the endosperm‐specific FIS2pro could not completely restore the defective embryo or endosperm, whereas a combination of these three promoters in rfc4‐1/+ enabled the aborted ovules to develop into viable seeds. This suggests that AtRFC4 functions simultaneously in endosperm and embryo and that the proliferation of endosperm is critical for embryo maturation. Assays of DNA content in rfc4‐1/+ verified that DNA replication was disrupted in endosperm and embryo, resulting in blocked mitosis. Moreover, we observed a decreased proportion of late S‐phase and M‐phase cells in the rfc4‐1/–FIS2;DD45;ABI3pro::AtRFC4 seedlings, suggesting that incomplete DNA replication triggered cell cycle arrest in cells of the root apical meristem. Therefore, we conclude that AtRFC4 is a crucial gene for DNA replication.  相似文献   

11.
Systemic acquired resistance (SAR) is a plant immune response induced by local necrotizing pathogen infections. Expression of SAR in Arabidopsis (Arabidopsis thaliana) plants correlates with accumulation of salicylic acid (SA) and up-regulation of Pathogenesis-Related (PR) genes. SA is an essential and sufficient signal for SAR. In a genetic screen to search for negative regulators of PR gene expression and SAR, we found a new mutant that is hypersensitive to SA and exhibits enhanced induction of PR genes and resistance against the virulent oomycete Hyaloperonospora arabidopsidis Noco2. The enhanced pathogen resistance in the mutant is Nonexpressor of PR genes1 independent. The mutant gene was identified by map-based cloning, and it encodes a protein with high homology to Replication Factor C Subunit3 (RFC3) of yeast and other eukaryotes; thus, the mutant was named rfc3-1. rfc3-1 mutant plants are smaller than wild-type plants and have narrower leaves and petals. On the epidermis of true leaves, there are fewer cells in rfc3-1 compared with the wild type. Cell production rate is reduced in rfc3-1 mutant roots, indicating that the mutated RFC3 slows down cell proliferation. As Replication Factor C is involved in replication-coupled chromatin assembly, our data suggest that chromatin assembly and remodeling may play important roles in the negative control of PR gene expression and SAR.  相似文献   

12.
Replication factor C (RF-C), an auxiliary factor for DNA polymerases δ and , is a multiprotein complex consisting of five different polypeptides. It recognizes a primer on a template DNA, binds to a primer terminus, and helps load proliferating cell nuclear antigen onto the DNA template. The RFC2 gene encodes the third-largest subunit of the RF-C complex. To elucidate the role of this subunit in DNA metabolism, we isolated a thermosensitive mutation (rfc2-1) in the RFC2 gene. It was shown that mutant cells having the rfc2-1 mutation exhibit (i) temperature-sensitive cell growth; (ii) defects in the integrity of chromosomal DNA at restrictive temperatures; (iii) progression through cell cycle without definitive terminal morphology and rapid loss of cell viability at restrictive temperatures; (iv) sensitivity to hydroxyurea, methyl methanesulfonate, and UV light; and (v) increased rate of spontaneous mitotic recombination and chromosome loss. These phenotypes of the mutant suggest that the RFC2 gene product is required not only for chromosomal DNA replication but also for a cell cycle checkpoint. It was also shown that the rfc2-1 mutation is synthetically lethal with either the cdc44-1 or rfc5-1 mutation and that the restrictive temperature of rfc2-1 mutant cells can be lowered by combining either with the cdc2-2 or pol2-11 mutation. Finally, it was shown that the temperature-sensitive cell growth phenotype and checkpoint defect of the rfc2-1 mutation can be suppressed by a multicopy plasmid containing the RFC5 gene. These results suggest that the RFC2 gene product interacts with the CDC44/RFC1 and RFC5 gene products in the RF-C complex and with both DNA polymerases δ and during chromosomal DNA replication.  相似文献   

13.
Root meristem activity is essential for root morphogenesis and adaptation, but the molecular mechanism regulating root meristem activity is not fully understood. Here, we identify an F-box family E3 ubiquitin ligase named SHORT PRIMARY ROOT (SHPR) that regulates primary root (PR) meristem activity and cell proliferation in rice. SHPR loss-of-function mutations impair PR elongation in rice. SHPR is involved in the formation of an SCF complex with the Oryza sativa SKP1-like protein OSK1/20. We show that SHPR interacts with Oryza sativa SEUSS-LIKE (OsSLK) in the nucleus and is required for OsSLK polyubiquitination and degradation by the ubiquitin 26S-proteasome system (UPS). Transgenic plants overexpressing OsSLK display a shorter PR phenotype, which is similar to the SHPR loss-of-function mutants. Genetic analysis suggests that SHPR promotes PR elongation in an OsSLK-dependent manner. Collectively, our study establishes SHPR as an E3 ubiquitin ligase that targets OsSLK for degradation, and uncovers a protein ubiquitination pathway as a mechanism for modulating root meristem activity in rice.  相似文献   

14.
Proliferating cell nuclear antigen loading onto DNA by replication factor C (RFC) is a key step in eukaryotic DNA replication and repair processes. In this study, the C-terminal domain (CTD) of the large subunit of fission yeast RFC is shown to be essential for its function in vivo. Cells carrying a temperature-sensitive mutation in the CTD, rfc1-44, arrest with incompletely replicated chromosomes, are sensitive to DNA damaging agents, are synthetically lethal with other DNA replication mutants, and can be suppressed by mutations in rfc5. To assess the contribution of the RFC-like complexes Elg1–RFC and Ctf18–RFC to the viability of rfc1-44, genes encoding the large subunits of these complexes have been deleted and overexpressed. Inactivation of Ctf18–RFC by the deletion of ctf18+, dcc1+ or ctf8+ is lethal in an rfc1-44 background showing that full Ctf18–RFC function is required in the absence of fully functional RFC. In contrast, rfc1-44 elg1Δ cells are viable and overproduction of Elg1 in rfc1-44 is lethal, suggesting that Elg1–RFC plays a negative role when RFC function is inhibited. Consistent with this, the deletion of elg1+ is shown to restore viability to rfc1-44 ctf18Δ cells.  相似文献   

15.
16.
We have identified a gene, Lateral Root Development 3 (LRD3), that is important for maintaining a balance between primary and lateral root growth. The lrd3 mutant has decreased primary root growth and increased lateral root growth. We determined that the LRD3 gene encodes a LIM-domain protein of unknown function. LRD3 is expressed only in the phloem companion cells, which suggested a role in phloem function. Indeed, while phloem loading and export from the shoot appear to be normal, delivery of phloem to the primary root tip is limited severely in young seedlings. Abnormalities in phloem morphology in these seedlings indicate that LRD3 is essential for correct early phloem development. There is a subsequent spontaneous recovery of normal phloem morphology, which is correlated tightly with increased phloem delivery and growth of the primary root. The LRD3 gene is one of very few genes described to affect phloem development, and the only one that is specific to early phloem development. Continuous growth on auxin also leads to recovery of phloem development and function in lrd3, which demonstrates that auxin plays a key role in early phloem development. The root system architecture and the pattern of phloem allocation in the lrd3 root system suggested that there may be regulated mechanisms for selectively supporting certain lateral roots when the primary root is compromised. Therefore, this study provides new insights into phloem-mediated resource allocation and its effects on plant root system architecture.  相似文献   

17.
18.
Koi S  Kato M 《Annals of botany》2003,91(7):927-937
Root meristem structure and root branching in three species of Cladopus were investigated from developmental and anatomical perspectives. Cladopus fukiensis has a compressed bell-shaped meristem at the apex of a compressed subcylindrical root, while C. javanicus and perhaps C. nymanii, with a ribbon-like root, have a half lozenge-shaped ( subset as seen from above) meristem composed of an apical meristem of cubic cells and a marginal meristem of rectangular cells. The dorsiventrality of the meristem results in root dorsiventrality, and a marginal meristem contributes to the broadening of the root. Comparisons of meristem structure and root morphology suggest that the ribbon-like root of, e.g. C. javanicus, evolved towards the foliose root of Hydrobryum, sister to the genus Cladopus, by loss of an indeterminate apical meristem. The lateral root of C. javanicus initiates within the meristem of a parent root. The dorsal dermal layer and inner cells of the lateral-root meristem appear endogenously under the dermal layer of the parent root, while the ventral layer is derived exogenously from a ventral dermal layer continuous with the parent-root meristem. This mosaic pattern of exogenous and endogenous root formation differs from the truly exogenous formation seen in Hydrobryum and Zeylanidium. The dorsiventral mosaic origin of the root meristem may account for root cap asymmetry.  相似文献   

19.

Background and Aims

The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions.

Methods

Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data.

Key Results

The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase.

Conclusions

The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号