首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
People attend to cues that convey information about social norms and try to comply with norms they believe are in force. Dispositions to comply with social norms are universal, suggesting that adherence to such norms is selectively advantageous. Possibly, compliance with social norms, however arbitrary these may be, serves a signaling function and is used to control attributions affecting fitness. To begin to test this hypothesis, we performed several experiments in which subjects watched videotapes of models violating everyday social norms and then rated those models on dimensions that would be relevant to the models' fitness, if subjects and models were socially interacting. In some experiments, violations of minor social norms significantly altered such ratings. Even subjects who failed to cite norm violations when given the opportunity nonetheless gave lower ratings to models as the result of norm violations. A manipulation that increased the salience of such norms increased the adverse effects of norms violations. The results are consistent with the hypothesis that norm compliance serves an important signaling function.  相似文献   

2.
We model the evolution of reaction norms focusing on three aspects: frequency-dependent selection arising from resource competition, maintenance and production costs of phenotypic plasticity, and three characteristics of environmental heterogeneity (frequency of environments, their intrinsic carrying capacity and the sensitivity to phenotypic maladaptation in these environments). We show that (i) reaction norms evolve so as to trade adaptation for acquiring resources against cost avoidance; (ii) maintenance costs cause reaction norms to better adapt to frequent rather than to infrequent environments, whereas production costs do not; and (iii) evolved reaction norms confer better adaptation to environments with low rather than with high intrinsic carrying capacity. The two previous findings contradict earlier theoretical results and originate from two previously unexplored features that are included in our model. First, production costs of phenotypic plasticity are only incurred when a given phenotype is actually produced. Therefore, they are proportional to the frequency of environments, and these frequencies thus affect the selection pressure to avoid costs just as much as the selection pressure to improve adaptation. This prevents the frequency of environments from affecting the evolving reaction norm. Secondly, our model describes the evolution of plasticity for a phenotype determining an individual's capability to acquire resources, and thus its realized carrying capacity. When individuals are distributed randomly across environments, they cannot avoid experiencing environments with intrinsically low carrying capacity. As selection pressures arising from the need to improve adaptation are stronger under such extreme conditions than under mild ones, better adaptation to environments with low rather than with high intrinsic carrying capacity results.  相似文献   

3.
Sex‐determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex‐determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature‐dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco‐evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.  相似文献   

4.
Unpredictability during development of the optimum phenotype under future selection leads to a compromise reaction norm with a slope that is shallower than the slope of the optimum reaction norm. Unpredictability of selection can lead to an evolved curved reaction norm when genetic variation for curvature is available even if the optimum reaction norm is linear. This requires asymmetry in the frequency distribution of the habitats of selection; at small population size, stochasticity in the number of individuals per selection habitat is sufficient to generate such asymmetry. Unpredictability of selection in structured populations leads to local genetic differentiation of reaction norms. The mean habitat of a subpopulation is defined as the subpopulation's focal habitat. The evolved mean reaction norm of each subpopulation is anchored at the optimum genotypic value in its focal habitat. Linear reaction norms are parallel if the conditional distribution of adults around the focal habitats is the same for each subpopulation. Adult migration and absence of zygote dispersal represents the ultimate structured population, each habitat playing the role of focal habitat. Absence of zygote dispersal requires that the flow of individuals through the habitats is used instead of the habitats’ frequencies in the prediction of the evolved reaction norm. Adult migration in absence of zygote dispersal leads to an evolved pattern of locally differentiated reaction norms with optimum genotypic value anchored in the focal habitat and, for linear reaction norms, parallel slopes.  相似文献   

5.
In this paper, we study the spread of social norms, such as rules and customs that are components of human cultures. We consider the spread of two social norms, which are linked through individual behaviors. Spreading social norms depend not only on the social network structure, but also on the learning system. We consider four social network structures: (1) complete mixing, in which each individual interacts with the others at random, (2) lattice, in which each individual interacts with its neighbors with some probability and with the others at random, (3) power-law network, in which a few influential people have more social contacts than the others, and (4) random graph network, in which the number of contacts follows a Poisson distribution. Using the lattice model, we also investigate the effect of the small-world phenomenon on the dynamics of social norms. In our models, each individual learns a social norm by trial and error (individual learning) and also imitates the other's social norm (social learning). We investigate how social network structure and learning systems affect the spread of two linked social norms. Our main results are: (1) Social learning does not lead to coexistence of social norms. Individual learning produces coexistence, and the dynamics of coexistence depend on which social norms are learned individually. (2) Social norms spread fastest in the power-law network model, followed by the random graph model, the complete mixing model, the two-dimensional lattice model and the one-dimensional lattice. (3) We see a "small world effect" in the one-dimensional model, but not in two dimensions.  相似文献   

6.
7.
Current explanatory frameworks for social norms pay little attention to why and how brains might carry out computational functions that generate norm compliance behavior. This paper expands on existing literature by laying out the beginnings of a neurocomputational framework for social norms and social cognition, which can be the basis for advancing our understanding of the nature and mechanisms of social norms. Two neurocomputational building blocks are identified that might constitute the core of the mechanism of norm compliance. They consist of Bayesian and reinforcement learning systems. It is sketched why and how the concerted activity of these systems can generate norm compliance by minimization of three specific kinds of prediction-errors.  相似文献   

8.
There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state‐space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero‐point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state‐space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero‐point problem is present in all types of reaction norm models, parametrized as well as function‐valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.  相似文献   

9.
Genetic trade-offs such as between generalist–specialist strategies can be masked by changes in compensatory processes involving energy allocation and acquisition which regulation depends on the state of the individual and its ecological surroundings. Failure to account for such state dependence may thus lead to misconceptions about the trade-off structure and nature of constraints governing reaction norm evolution. Using three closely related butterflies, we first show that foraging behaviours differ between species and change remarkably throughout ontogeny causing corresponding differences in the thermal niches experienced by the foraging larvae. We further predicted that thermal reaction norms for larval growth rate would show state-dependent variation throughout development as a result of selection for optimizing feeding strategies in the respective foraging niches of young and old larvae. We found substantial developmental plasticity in reaction norms that was species-specific and reflected the different ontogenetic niche shifts. Any conclusions regarding constraints on performance curves or species-differentiation in thermal physiology depend on when reaction norms were measured. This demonstrates that standardized estimates at single points in development, or in general, allow variation in only one ecological dimension, may sometimes provide incomplete information on reaction norm constraints.  相似文献   

10.
When environments differentially influence male and female performance, environmental sex determination (ESD) might evolve. The conclusion from several previous theoretical models was that reaction norms for sex determination should have a single, sharp threshold, with only females being produced in some environments and only males in others. These reaction norms can be disadvantageous in fluctuating environments, however, because they lead to sex-ratio fluctuations. We analysed the evolution of ESD, looking for equilibrium strategies in unconstrained as well as constrained strategy spaces. We identified situations where a single-threshold reaction norm is not evolutionarily stable. In these cases, we found stable strategies in the form of complex reaction norms, showing an oscillatory pattern of sex determination with respect to variation in an environmental variable. Considering that constraints could prevent such phenotypes from being realized, we found that certain randomized reaction norms, with probabilistic sex determination for a range of environments, would achieve nearly the same fitness. We also investigated reaction norms constrained to have a single threshold and found that genetic polymorphism in the environmental threshold value could evolve, producing a similar effect as a randomized reaction norm. We argue that the appearance of genetic variation can be regarded as an alternative outcome when constraints prevent the evolution of a more complex or a randomized strategy.  相似文献   

11.
Analysis of reaction norms, the functions by which the phenotype produced by a given genotype depends on the environment, is critical to studying many aspects of phenotypic evolution. Different techniques are available for quantifying different aspects of reaction norm variation. We examine what biological inferences can be drawn from some of the more readily applicable analyses for studying reaction norms. We adopt a strongly biologically motivated view, but draw on statistical theory to highlight strengths and drawbacks of different techniques. In particular, consideration of some formal statistical theory leads to revision of some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what simple analysis of the slope between mean phenotype in two environments can tell us about reaction norms, explore the conditions under which polynomial regression can provide robust inferences about reaction norm shape, and explore how different existing approaches may be used to draw inferences about variation in reaction norm shape. We show how mixed model‐based approaches can provide more robust inferences than more commonly used multistep statistical approaches, and derive new metrics of the relative importance of variation in reaction norm intercepts, slopes, and curvatures.  相似文献   

12.
We present a general quantitative genetic model for the evolution of reaction norms. This model goes beyond previous models by simultaneously permitting any shaped reaction norm and allowing for the imposition of genetic constraints. Earlier models are shown to be special cases of our general model; we discuss in detail models involving just two macroenvironments, linear reaction norms, and quadratic reaction norms. The model predicts that, for the case of a temporally varying environment, a population will converge on (1) the genotype with the maximum mean geometric fitness over all environments, (2) a linear reaction norm whose slope is proportional to the covariance between the environment of development and the environment of selection, and (3) a linear reaction norm even if nonlinear reaction norms are possible. An examination of experimental studies finds some limited support for these predictions. We discuss the limitations of our model and the need for more realistic gametic models and additional data on the genetic and developmental bases of plasticity.  相似文献   

13.
Rocha and Klaczko emphasize the general complexity of reaction norm shape and caution that ignoring such complexity can be misleading when forcing nonlinear reaction norms into linear shapes. They refer to our article on differences in plasticity of Drosophila serrata populations along a latitudinal gradient as an example of a misleading simplifying approach. However, their claim that an artifact is introduced into our analyses by calculating developmental rate as the reciprocal of development time (rate = time?1) is based on a misunderstanding of the mathematical properties of the thermal developmental rate reaction norm. Here we discuss why developmental rate is a suitable measure for our study and under which circumstances it is appropriate to describe developmental rate by a linear model.  相似文献   

14.
Ethnic groups are universal and unique to human societies. Such groups sometimes have norms of behavior that are adaptively linked to their social and ecological circumstances, and ethnic boundaries may function to protect that variation from erosion by interethnic interaction. However, such interaction is often frequent and voluntary, suggesting that individuals may be able to strategically reduce its costs, allowing adaptive cultural variation to persist in spite of interaction with out-groups with different norms. We examine five mechanisms influencing the dynamics of ethnically distinct cultural norms, each focused on strategic individual-level choices in interethnic interaction: bargaining, interaction-frequency-biased norm adoption, assortment on norms, success-biased interethnic social learning, and childhood socialization. We use Bayesian item response models to analyze patterns of norm variation and interethnic interaction in an ethnically structured Amazonian population. We show that, among indigenous Matsigenka, interethnic education with colonial Mestizos is more strongly associated with Mestizo-typical norms than even extensive interethnic experience in commerce and wage labor is. Using ethnographic observations, we show that all five of the proposed mechanisms of norm adoption may contribute to this effect. However, of these mechanisms, we argue that changes in relative bargaining power are particularly important for ethnic minorities wishing to preserve distinctive norms while engaging in interethnic interaction in domains such as education. If this mechanism proves applicable in a range of other ethnographic contexts, it would constitute one cogent explanation for when and why ethnically structured cultural variation can either persist or erode given frequent, and often mutually beneficial, interethnic interaction.  相似文献   

15.
Yap JS  Wang C  Wu R 《PloS one》2007,2(6):e554
Whether and how thermal reaction norm is under genetic control is fundamental to understand the mechanistic basis of adaptation to novel thermal environments. However, the genetic study of thermal reaction norm is difficult because it is often expressed as a continuous function or curve. Here we derive a statistical model for dissecting thermal performance curves into individual quantitative trait loci (QTL) with the aid of a genetic linkage map. The model is constructed within the maximum likelihood context and implemented with the EM algorithm. It integrates the biological principle of responses to temperature into a framework for genetic mapping through rigorous mathematical functions established to describe the pattern and shape of thermal reaction norms. The biological advantages of the model lie in the decomposition of the genetic causes for thermal reaction norm into its biologically interpretable modes, such as hotter-colder, faster-slower and generalist-specialist, as well as the formulation of a series of hypotheses at the interface between genetic actions/interactions and temperature-dependent sensitivity. The model is also meritorious in statistics because the precision of parameter estimation and power of QTLdetection can be increased by modeling the mean-covariance structure with a small set of parameters. The results from simulation studies suggest that the model displays favorable statistical properties and can be robust in practical genetic applications. The model provides a conceptual platform for testing many ecologically relevant hypotheses regarding organismic adaptation within the Eco-Devo paradigm.  相似文献   

16.
Understanding norms is a key challenge in sociology. Nevertheless, there is a lack of dynamical models explaining how one of several possible behaviors is established as a norm and under what conditions. Analysing an agent-based model, we identify interesting parameter dependencies that imply when two behaviors will coexist or when a shared norm will emerge in a heterogeneous society, where different populations have incompatible preferences. Our model highlights the importance of randomness, spatial interactions, non-linear dynamics, and self-organization. It can also explain the emergence of unpopular norms that do not maximize the collective benefit. Furthermore, we compare behavior-based with preference-based punishment and find interesting results concerning hypocritical punishment. Strikingly, pressuring others to perform the same public behavior as oneself is more effective in promoting norms than pressuring others to meet one’s own private preference. Finally, we show that adaptive group pressure exerted by randomly occuring, local majorities may create norms under conditions where different behaviors would normally coexist.  相似文献   

17.
The concept of cooperative communities that enforce norm conformity through reward, as well as shaming, ridicule, and ostracism, has been central to anthropology since the work of Durkheim. Prevailing approaches from evolutionary theory explain the willingness to exert sanctions to enforce norms as self-interested behavior, while recent experimental studies suggest that altruistic rewarding and punishing—“strong reciprocity”—play an important role in promoting cooperation. This paper will use data from 308 conversations among the Ju/’hoansi (!Kung) Bushmen (a) to examine the dynamics of norm enforcement, (b) to evaluate the costs of punishment in a forager society and understand how they are reduced, and (c) to determine whether hypotheses that center on individual self-interest provide sufficient explanations for bearing the costs of norm enforcement, or whether there is evidence for strong reciprocity. Polly Wiessner is a professor of anthropology at the University of Utah. She has carried out fieldwork with the Ju/’hoansi of the Kalahari for the past 30 years on social networks, style in artifacts, economy, population, nutrition, and social change. She has also worked among the Enga of Papua New Guinea since 1985 on the oral history of exchange, ritual, and warfare.  相似文献   

18.
Almost all life histories are phenotypically plastic: that is, life-history traits such as timing of breeding, family size or the investment in individual offspring vary with some aspect of the environment, such as temperature or food availability. One approach to understanding this phenotypic plasticity from an evolutionary point of view is to extend the optimality approach to the range of environments experienced by the organism. This approach attempts to understand the value of particular traits in terms of the selection pressures that act on them either directly or owing to trade-offs due to resource allocation and other factors such as predation risk. Because these selection pressures will between environments, the predicted optimal phenotype will too. The relationship expressing the optimal phenotype for different environments is the optimal reaction norm and describes the optimal phenotypic plasticity. However, this view of phenotypic plasticity ignores the fact that the reaction norm must be underlain by some sort of control system: cues about the environment must be collected by sense organs, integrated into a decision about the appropriate life history, and a message sent to the relevant organs to implement that decision. In multicellular animals, this control mechanism is the neuroendocrine system. The central question that this paper addresses is whether the control system affects the reaction norm that evolves. This might happen in two different ways: first, the control system will create constraints on the evolution of reaction norms if it cannot be configured to produce the optimal reaction norm and second, the control system will create additional selection pressures on reaction norms if the neuroendocrine system is costly. If either of these happens, a full understanding of the way in which selection shapes reaction norms must include details of the neuroendocrine control system. This paper presents the conceptual framework needed to explain what is meant by a constraint or cost being created by the neuroendocrine system and discusses the extent to which this occurs and some possible examples. The purpose of doing this is to encourage endocrinologists to take a fresh look at neuroendocrine mechanisms and help identify the properties of the system and situations in which these generate constraints and costs that impinge on the evolution of phenotypic plasticity.  相似文献   

19.
Although many previous studies have shown that eye-like images promote generosity, the mechanism of this “watching eyes effect” remains unclear. One possible cause is the concern for a good reputation as a generous person, while the other is the concerns for a bad reputation as a norm violator. To elucidate which of these two concerns is the main influencer, the present study conducted a laboratory experiment that investigated whether the watching eyes effect changed depending on social norms. If the concern for a good reputation leads to the effect, prosocial behavior would be more likely in the presence of watching eyes, regardless of the social norms involved. However, if the concern for avoiding a bad reputation as a norm violator leads to the effect, watching eyes promote prosocial behavior only in the existence of prosocial norms. In the original study, participants were asked to make a charitable donation under conditions in which eye-like images either were or were not present. In addition to the eye-like images, we manipulated prosocial norms by informing each participant of either high or low mean donation amounts given by previous participants. We found that watching eyes promoted donations only when a prosocial norm existed. This supports the idea that the watching eyes effect is caused by a concern for avoiding a bad reputation from violating norms. However, in a replication study, we were unable to replicate the original results; watching eyes did not promote generosity regardless of the norm. Taken together, we discussed the moderation effect of norms and the possibility of other moderators.  相似文献   

20.
The neural signature of social norm compliance   总被引:1,自引:0,他引:1  
All known human societies establish social order by punishing violators of social norms. However, little is known about how the brain processes the punishment threat associated with norm violations. We use fMRI to study the neural circuitry behind social norm compliance by comparing a treatment in which norm violations can be punished with a control treatment in which punishment is impossible. Individuals' increase in norm compliance when punishment is possible exhibits a strong positive correlation with activations in the lateral orbitofrontal cortex and right dorsolateral prefrontal cortex. Moreover, lateral orbitofrontal cortex activity is strongly correlated with Machiavellian personality characteristics. These findings indicate a neural network involved in social norm compliance that might constitute an important basis for human sociality. Different activations of this network reveal individual differences in the behavioral response to the punishment threat and might thus provide a deeper understanding of the neurobiological sources of pathologies such as antisocial personality disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号