首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azotobacter chroococcum MAL-201 accumulates poly(3-hydroxybutyric acid) [PHB] when grown in glucose containing nitrogen-free Stockdale medium. The same medium supplemented with valerate alone and valerate plus polyethylene glycol (PEG) leads to the accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [PHBV] and PEG containing PHBV-PEG polymers, respectively. The intracellular degradation of these polymers as studied in carbon-free Stockdale medium showed a rapid degradation of PHB followed by PHBV, while it was least in case of PHBV-PEG. The rate of such degradation was 44.16, 26.4 and 17.0 mg h(-1)l(-1) for PHB, PHBV and PHBV-PEG, respectively. During the course of such of PHBV and PHBV-PEG degradation the 3HB mol% of polymers decreased significantly with increase of 3HV mol fraction, the EG mol% in PHBV-PEG, however, remained constant. After 50h of degradation the decrease in intrinsic viscosity and molecular mass of PHBV-PEG were 37.5 and 43.6%, respectively. These values appeared low compared to PHB and PHBV. Moreover, the increasing EG content of polymer retarded their extent of degradation. Presence of PEG, particularly of low molecular weight PEG was inhibitory to intracellular PHA depolymerise (i-PHA depolymerase) activity and the relative substrate specificity of the i-PHA depolymerase of MAL-201 appeared to be PHB > PHBV > PHBV-PEG.  相似文献   

2.
Abstract The current knowledge on the structure and on the organization of polyhydroxyalkanoic acid (PHA)-biosynthetic genes from a wide range of different bacteria, which rely on different pathways for biosynthesis of this storage polyesters, is provided. Molecular data will be shown for genes of Alcaligenes eutrophus , purple non-sulfur bacteria, such as Rhodospirillum rubrum , purple sulfur bacteria, such as Chromatium vinosum , pseudomonads belonging to rRNA homology group I, such as Pseudomonas aeruginosa, Methylobacterium extorquens , and for the Gram-positive bacterium Rhodococcus ruber . Three different types of PHA synthases can be distinguished with respect to their substrate specificity and structure. Strategies for the cloning of PHA synthase structural genes will be outlined which are based on the knowledge of conserved regions of PHA synthase structural genes and of the PHA-biosynthetic routes in bacteria as well as on the heterologous expression of these genes and on the availability of mutants impaired in the accumulation of PHA. In addition, a terminology for the designation of PHAs and of proteins and genes relevant for the metabolism of PHA is suggested.  相似文献   

3.
Diversity of bacterial polyhydroxyalkanoic acids   总被引:29,自引:0,他引:29  
Abstract An overview is provided on the diversity of biosynthetic polyhydroxyalkanoic acids, and all hitherto known constituents of these microbial storage compounds are listed. The occurrence of 91 different hydroxyalkanoic acids reflects the low substrate specificity of polyhydroxyalkanoic acid synthases which are the key enzymes of polyhydroxyalkanoic acid biosynthesis. In addition, the importance of bacterial anabolism and catabolism, which provide the coenzyme A thioesters of the respective hydroxyalkanoic acids as substrates to these PHA synthases, is emphasized.  相似文献   

4.
Abstract Alcaligenes eutrophus and Burkholderia cepacia synthesized and accumulated a terpolyester consisting of 3-hydroxybutyric acid, 3-hydroxyvaleric acid, and 2-methyl-3-hydroxybutyric acid (2Me3HB) if the cells were cultivated in a mineral salts medium containing tiglic acid as the sole carbon source or in combination with gluconic acid. The presence of 1–2 mol% of 2Me3HB in the polyester was confirmed by comparison with chemically synthesized methyl ester of 2Me3HB and by nuclear magnetic resonance spectrometry as well as by gas chromatography/mass spectrometry. This is the first report of the incorporation of 2Me3HB by axenic cultures cultivated under defined conditions.  相似文献   

5.
Abstract Fifty different polyhydroxyalkanoic acid (PHA)-accumulating bacterial strains were investigated for the occurrence of phasin proteins bound to PHA granules and related to the GA24 protein of Alcaligenes eutrophus H16, by isolating PHA granules and Western blot analysis of granule-associated proteins employing antibodies raised against the GA24 protein. It could be demonstrated that the PHA granules of many poly(3-hydroxybutyrate)-accumulating bacteria exhibited ja similar protein pattern, and a predominant protein of 24 ± 2 kDa occurred in the granules of A. eutrophus strains A7, CH34, JMP222, N9A and TF93 exhibiting N-terminal amino acid sequences identical to that of the GA24 protein. Proteins bound to the granules of A. latus, Burkholderia caryophvli B. cepacia B. solanacearum, Pseudomonas glathei. Rhodobacter sphaeroides and Telluria mixta also gave positive immunoreactions. Granule-associated proteins of small size also; occurred in various strains of the Gram-positive bacteria Bacillus megaterium and R. ruher as well as in the Gram-negative bacteria Azotohacter sp., Chromatium vinosum, Comamonas acidovorans, Methylobacterium sp., Mycoplana ruhra, Paracoccus denitrificans, Pseudomonas sp., Rhodospirillum ruhrum, Rubrivivax gelatinosus and Thiocystis violacea ; however, they gave no immunoreaction. This study clearly demonstrated that phasins are wide-spread if not essential in PHA-accümulating bacteria.  相似文献   

6.
The oxazine dye Nile blue A and its fluorescent oxazone form, Nile red, were used to develop a simple and highly sensitive staining method to detect poly(3-hydroxybutyric acid) and other polyhydroxyalkanoic acids (PHAs) directly in growing bacterial colonies. In contrast to previously described methods, these dyes were directly included in the medium at concentrations of only 0.5 μg/ml, and growth of the cells occurred in the presence of the dyes. This allowed an estimation of the presence of PHAs in viable colonies at any time during the growth experiment and a powerful discrimination between PHA-negative and PHA-positive strains. The presence of Nile red or Nile blue A did not affect growth of the bacteria. This viable-colony staining method was in particular applicable to gram-negative bacteria such as Azotobacter vinelandii, Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. It was less suitable for discriminating between PHA-negative and PHA-positive strains of gram-positive bacteria such as Bacillus megaterium or Rhodococcus ruber, but it could also be used to discriminate between wax-ester- and triacylglycerol-negative and -positive strains of Acinetobacter calcoaceticus or Rhodococcus opacus. The potential of this new method and its application to further investigations of PHA synthases and PHA biosynthesis pathways are discussed. Received: 12 August 1998 / Accepted: 11 November 1998  相似文献   

7.
During cultivation under storage conditions with BG11 medium containing acetate as a carbon source, Synechocystis sp. PCC6803 accumulated poly(3-hydroxybutyrate) up to 10% (w/w) of the cell dry weight. Our analysis of the complete Synechocystis sp. PCC6803 genome sequence, which had recently become available, revealed that not only the open reading frame slr1830 (which was designated as phaC) but also the open reading frame slr1829, which is located colinear and upstream of phaC, most probably represent a polyhydroxyalkanoic acid (PHA) synthase gene. The open reading frame slr1829 was therefore designated as phaE. The phaE and phaC gene products exhibited striking sequence similarities to the corresponding PHA synthase subunits PhaE and PhaC of Thiocystis violacea, Chromatium vinosum, and Thiocapsa pfennigii. The Synechocystis sp. PCC6803 genes were cloned using PCR and were heterologously expressed in Escherichia coli and in Alcaligenes eutrophus. Only coexpression of phaE and phaC partially restored the ability to accumulate poly(3-hydroxybutyrate) in the PHA-negative mutant A. eutrophus PHB4. These results confirmed our hypothesis that coexpression of the two genes is necessary for the synthesis of a functionally active Synechocystis sp. PCC6803 PHA synthase. PHA granules were detected by electron microscopy in these cells, and the PHA-granule-associated proteins were studied. Western blot analysis of Synechocystis sp. PCC6803 crude cellular extracts and of granule-associated proteins employing antibodies raised against the PHA synthases of A. eutrophus (PhaC) and of C. vinosum (PhaE and PhaC) revealed no immunoreaction. Received: 11 March 1998 / Accepted: 2 June 1998  相似文献   

8.
The ability of Delftia acidovorans to incorporate a broad range of 3-hydroxyvalerate (3HV) monomers into polyhydroxyalkanoate (PHA) copolymers was evaluated in this study. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] containing 0–90 mol% of 3HV was obtained when a mixture of sodium 3-hydroxybutyrate and sodium valerate was used as the carbon sources. Transmission electron microscopy analysis revealed an interesting aspect of the P(3HB-co-3HV) granules containing high molar ratios of 3HV whereby, the copolymer granules were generally larger than those of poly(3-hydroxybutyrate) [P(3HB)] granules, despite having almost the same cellular PHA contents. The large number of P(3HB-co-3HV) granules occupying almost the entire cell volume did not correspond to a higher amount of polymer by weight. This indicated that the granules of P(3HB-co-3HV) contain polymer chains that are loosely packed and therefore have lower density than P(3HB) granules. It was also interesting to note that a decrease in the length of the side chain from 3HV to 4-hydroxybutyrate (4HB) corresponded to an increase in the density of the respective PHA granules. The presence of longer side chain monomers (3HV) in the PHA structure seem to exhibit steric effects that prevent the polymer chains in the granules from being closely packed. The results reported here have important implications on the maximum ability of bacterial cells to accumulate PHA containing monomers with longer side chain length.  相似文献   

9.
A collection of 186 heterotrophic bacteria, isolated directly from a continuous-upflow fixed-bed reactor for the denitrification of drinking water, in which poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) granules acted as biofilm carrier, carbon source and electron donor, was studied with regard to taxonomic affiliation and degradation and denitrification characteristics. Two granule samples were taken from a fully operating reactor for enumeration and isolation of heterotrophic bacteria. One sample was drawn from the lower part of the reactor, near the oxic zone, and the other sample from the upper, anoxic part of the fixed bed. Dominant colonies were isolated and the cultures were identified using fatty acid analysis and 16S rDNA sequencing. Their ability to degrade the polymer and 3-hydroxybutyrate and to denitrify in pure culture was assessed. The results show that high numbers of heterotrophic bacteria were present in the biofilms on the polymer granules, with marked differences in taxonomic composition and potential functions between the lower and upper part of the fixed bed. The majority of the isolates were Gram negative bacteria, and most of them were able to reduce nitrate to nitrite or to denitrify, and to utilize 3-hydroxybutyrate as sole source of carbon. Only two groups, one identified as Acidovorax facilis and the other phylogenetically related to Brevundimonas intermedia, could combine denitrification and utilization of poly(3-hydroxybutyrate) (PHB), and were found only in the upper sample. The other groups occurred either in the lower or upper part, or in both samples. They were assigned to Brevundimonas, Pseudomonas, Agrobacterium, Achromobacter, or Phyllobacterium, or were phylogenetically related to Afipia or Stenotrophomonas.  相似文献   

10.
There have been strong demands for nanofibrous scaffolds fabricated by electrospinning for various fields due to their various advantages. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibre mats were prepared. The effects of processing variables as well as the inclusion of poly(ethylene glycol) (PEG) on the morphologies of generated fibres were investigated using Fourier-transform infrared spectroscopy and scanning electron microscopy. The average fibrous diameter was monitored in the range 400–3000 nm relying on the total content of PEG. The fluorescence cell imaging of electrospun mats was also explored. The results of cell viability demonstrated that skin fibroblast BJ-1 cells showed different adhesions and growth rates for the three kinds of PHBV fibres. Electrospun PHBV mats with low amount of PEG offer a high-quality medium for cell growth. Therefore, those mats exhibited high potential for soft tissue engineering, in particular wound healing.  相似文献   

11.
Two bacterial consortia growing on a random copolymer of ethylene glycol and propylene glycol units were obtained by enrichment cultures from various microbial samples. Six major strains included in both consortia were purified and identified as Sphingomonads, Pseudomonas sp. and Stenotrophomonas maltophilia. Three of them (Sphingobium sp. strain EK-1, Sphingopyxis macrogoltabida strain EY-1, and Pseudomonas sp. strain PE-2) utilized both PEG and polypropylene glycol (PPG) as a sole carbon source. Four PEG-utilizing bacteria had PEG dehydrogenase (PEG-DH) activity, which was induced by PEG. PCR products from DNA of these bacteria generated with primers designed from a PEG-DH gene (AB196775 for S. macrogoltabida strain 103) indicated the presence of a sequence that is the homologous to the PEG-DH gene (99% identity). On the other hand, five PPG-utilizing bacteria had PPG dehydrogenase (PPG-DH) activity, but the activity was constitutive. PCR of a PPG-DH gene was performed using primers designed from a polyvinyl alcohol dehydrogenase (PVA-DH) gene (AB190288 for Sphingomonas sp. strain 113P3) because a PPG-DH gene has not been cloned yet, but both PPG-DH and PVA-DH were active toward PPG and PVA (Mamoto et al. 2006). PCR products of the five strains did not have similarity to each other or to oxidoreductases including PVA-DH. The paper was edited by a native speaker through American Journal Experts (http://www.journalexperts.com).  相似文献   

12.
13.
A precursor feeding strategy for effective biopolymer producer strain Azotobacter chroococcum 7B was used to synthesize various poly(3-hydroxybutyrate) (PHB) copolymers. We performed experiments on biosynthesis of PHB copolymers by A. chroococcum 7B using various precursors: sucrose as the primary carbon source, various carboxylic acids and ethylene glycol (EG) derivatives [diethylene glycol (DEG), triethylene glycol (TEG), poly(ethylene glycol) (PEG) 300, PEG 400, PEG 1000] as additional carbon sources. We analyzed strain growth parameters including biomass and polymer yields as well as molecular weight and monomer composition of produced copolymers. We demonstrated that A. chroococcum 7B was able to synthesize copolymers using carboxylic acids with the length less than linear 6C, including poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB-4MHV) using Y-shaped 6C 3-methylvaleric acid as precursor as well as EG-containing copolymers: PHB–DEG, PHB–TEG, PHB–PEG, and PHB–HV–PEG copolymers using short-chain PEGs (with n?≤?9) as precursors. It was shown that use of the additional carbon sources caused inhibition of cell growth, decrease in polymer yields, fall in polymer molecular weight, decrease in 3-hydroxyvalerate content in produced PHB–HV–PEG copolymer, and change in bacterial cells morphology that were depended on the nature of the precursors (carboxylic acids or EG derivatives) and the timing of its addition to the growth medium.  相似文献   

14.
聚乙二醇(PEG)对杜仲胚乳愈伤组织茎芽分化的影响   总被引:4,自引:0,他引:4  
实验中发现,在培养基中加入适量PEG可以显著提高杜仲胚乳愈伤分化频率。PEG这种促进分化的效果既与PEG的分子量和所用的浓度有关,也与培养基中无机离子的强度和蔗糖浓度有关。效果最佳的培养基配方是:在激素组成为BA(2.0-2.75mg/L)+NAA0.15mg/L)的基本培养基(MS无机盐+B5有机物+3%蔗糖)中,添加浓度为4%-6%PEG 4000或4%-5%PEG6000。在这种培养基上杜仲胚乳愈伤组织的分化频率均超过50%,最高可达70%以上,而在同样的条件下不加PEG时分化频率不到10%。然而,经PEG处理分化出来的胚乳再生植株中,部分苗玻璃化现象严重。  相似文献   

15.
Isolated microspores of Brassica napus were cultured on high concentrations of mannitol or polyethylene glycol (PEG 4000), with only a very limited amount of sucrose (0.08–0.1%) provided as carbohydrate source in the medium. While microspores cultured on high mannitol yielded no embryos and no embryogenic cell divisions were observed, microspores on high PEG developed into embryos within 2 weeks, and the embryo yield appeared comparable to that of the sucrose control. When placed under light, PEG embryos quickly changed color from yellow to dark green, while sucrose embryos first remained yellowish and then slowly changed color to pale green. Three-week-old PEG embryos were strikingly similar to immature zygotic embryos developed in ovulo, dissected at 14–15 days post-anthesis (DPA), while sucrose embryos differed from the latter in the size and shape, color and morphology of their cotyledons. These results demonstrate that in microspore embryogenesis of Brassica napus: (1) the level of metabolizable carbohydrate required for microspore embryo induction and formation appears to be substantially less than commonly used amounts, (2) sucrose as an osmoticum can be replaced with high-molecular-weight PEG. With further improvement the new method described here might be suitable for other Brassica species and would have a great potential application in breeding programs. Received: 29 May 1997 / Revision received: 12 August 1997 / Accepted: 2 September 1997  相似文献   

16.
The copolymerization of grafting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) onto ethyl cellulose (EC) was carried out through the homogeneous acylation reaction between EC as a backbone and telechelic OH-terminated PHBV oligomer as side chains in 1,2-dichloroethane by using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent and dibutyltin dilaurate as catalyst. The resulting copolymers were studied by using NMR, FT-IR, WAXD, DSC, and contact angle measurements. It is found that with the increasing of the HDI/PHBV fraction, a transition exhibition occurred on crystallization behavior and hydrophobic properties, which could be modulated through controlling the lengths and grafting densities of PHBV side chains. Compared with those of neat PHBV, the degree of crystallinity for EC-g-PHBV1.8 decreased from 58.1% to 39.1%, the maximum decomposition temperature increased from 259.6 to 266.3 °C, and the contact angle increased from 60.1° to 95.7°.  相似文献   

17.
The use of polyethylene glycol (PEG) as a refolding additive to a refolding cocktail comprising the molecular bichaperone ClpB and DnaKJE significantly enhances chaperone‐mediated refolding of heat‐denatured malate dehydrogenase (MDH). The critical factor to affect the refolding yield is the time point of introducing PEG to the refolding cocktail. The refolding efficiency reached approximately 90% only when PEG was added at the beginning of refolding reaction. The synergistic coordination of an inexpensive refolding additive PEG with the ClpB/DnaKJE bichaperone system may provide an economical route to further enhance the efficacy of ClpB/DnaKJE refolding cocktail approach, facilitating its implementation in large‐scale refolding processes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
We have investigated activation of two isoenzymes (lip1 and lip3) from Candida rugosa in polyethylene glycol (PEG) media. Aqueous solutions of PEG 8000 and 20,000 activate lip3 but not lip1 from C. rugosa. Maximum activation (260%) of lip3 requires 6 h of pre-incubation with PEG 8000 (4%, w/v). PEG seems to shift the equilibrium between the open and the closed forms of lip3 towards the active conformation. Inhibition experiments demonstrate that ligands have easier access to the lip3 active site than to the lip1 active site, both in the presence and the absence of PEG.

The presence of PEG in the crystallization medium is responsible for reported differences in the crystal structures of lip1 and lip3. A comparative analysis of crystallographic models of lip1 and lip3 suggests a role for PEG in activation of lip3 and further stabilization of the activated/open form via dimerization in aqueous media.  相似文献   


19.
(1) The water soluble polymer, poly(ethylene glycol), causes aggregation of sonicated vesicles of dimyristoylphosphatidylcholine in a manner consistent with a steric exclusion mechanism. (2) Poly(ethylene glycol) promotes the exchange of lipids between multilamellar vesicles of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine when the lipids are in the liquid-crystalline state. (3) 31P-NMR studies demonstrate that the bilayer configuration of smectic mesophases of dipalmitoylphosphatidylcholine is substantially maintained in the presence of poly(ethylene glycol).  相似文献   

20.
The potential use of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) copolymer as a biodegradable additive in polypropylene (PP) has been explored. The melt blending technique was used to produce the blend of PHBV/PP (PB10). The degradation studies of PB10 were done in the field as well as in controlled laboratory conditions. The structural changes were studied using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). SEM micrographs showed the formation of agglomerates, pits, grooves, and holes on the treated films as a result of microbial activity. FTIR spectra indicated clear evidences of oxo-biodegradation of polymer chains due to an increase in carbonyl peak index. Thermogravimetric analysis confirmed that the thermal stability of PB10 was increased after soil burial. This study contributed toward the prospective commercial applications of PHBV for use in the food packaging industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号